原文:交叉熵cross entropy和相对熵(kl散度)

交叉熵可在神经网络 机器学习 中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量真实分布p与当前训练得到的概率分布q有多么大的差异。 相对熵 relative entropy 就是KL散度 Kullback Leibler divergence ,用于衡量两个概率分布之间的差异。 对于两个概率分布和 ,其相对熵的计算公式为: 注意:由于 和 在公式中的 ...

2017-06-27 16:35 0 3895 推荐指数:

查看详情

KL相对)和交叉的区别

相对(relative entropy)就是KL(Kullback–Leibler divergence),用于衡量两个概率分布之间的差异。 一句话总结的话:KL可以被用于计算代价,而在特定情况下最小化KL等价于最小化交叉。而交叉的运算更简单,所以用交叉来当做代价 ...

Mon Mar 15 22:49:00 CST 2021 0 890
(Entropy),交叉(Cross-Entropy),KL-松散(KL Divergence)

1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练模型的时候就不停地调整参数使得我们预测出来的概率和真是的概率更加接近。 这篇文章我 ...

Wed Dec 06 00:14:00 CST 2017 0 10981
KL 相对

KL 又叫 相对,是衡量 两个概率分布 匹配程度的指标,KL 越大,分布差异越大,匹配越低 计算公式如下 或者 其中 p是 目标分布,或者叫被匹配的分布,或者叫模板分布,q 是去匹配的分布; 试想,p 是真实值,q 是预测值,岂不是 个 loss ...

Thu Mar 24 19:12:00 CST 2022 0 1939
KL-相对

参考 在pytorch中计算KLDiv loss 注意reduction='batchmean',不然loss不仅会在batch维度上取平均,还会在概率分布的维度上取平均。具体见官方文档 ...

Fri May 15 18:37:00 CST 2020 0 1878
交叉KL

参考:https://blog.csdn.net/b1055077005/article/details/100152102 (文中所有公式均来自该bolg,侵删) 信息奠基人香农(Shannon) ...

Sat Jan 04 19:04:00 CST 2020 0 1610
相对KL

1. 概述 在信息论中,相对等价于两个概率分布信息的差值,若其中一个概率分布为真实分布,另一个为理论(拟合)分布,则此时相对等于交叉与真实分布信息之差,表示使用理论分布拟合真实分布时所产生的信息损耗。 \[D_{K L}(p \| q)=\sum_{i=1}^{N}-p ...

Mon Jun 14 23:53:00 CST 2021 0 1276
信息相对KL)、交叉、条件、互信息、联合

信息   信息量和信息的概念最早是出现在通信理论中的,其概念最早是由信息论鼻祖香农在其经典著作《A Mathematical Theory of Communication》中提出的。如今,这些概念不仅仅是通信领域中的基础概念,也被广泛的应用到了其他的领域中,比如机器学习。   信息量用来 ...

Sat Jan 18 03:57:00 CST 2020 0 963
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM