以二元函数为例,$f(x,y)$,对于任意单位方向$u$,假设$u$是$x$轴的夹角,那么函数$f(x,y)$在$u$这个方向上的变化率为: $f_x(x,y) \cos \alpha + f_y(x,y) \sin \alpha=\nabla f(x,y)^T\begin{pmatrix ...
以二元函数为例,$f(x,y)$,对于任意单位方向$u$,假设$u$是$x$轴的夹角,那么函数$f(x,y)$在$u$这个方向上的变化率为: $f_x(x,y) \cos \alpha + f_y(x,y) \sin \alpha=\nabla f(x,y)^T\begin{pmatrix ...
转载:知乎专栏忆臻https://zhuanlan.zhihu.com/p/24913912 刚接触梯度下降这个概念的时候,是在学习机器学习算法的时候,很多训练算法用的就是梯度下降,然后资料和老师们也说朝着梯度的反方向变动,函数值下降最快,但是究其原因的时候,很多人都表达不清楚。所以我整理 ...
为什么梯度方向是变化最快的方向? 首先,回顾我们怎么在代码中求梯度的(梯度的数值定义): 1)对向量的梯度 以n×1实向量x为变元的实标量函数f(x)相对于x的梯度为一n×1列向量x,定义为 \[\nabla_{\boldsymbol{x}} f(\boldsymbol{x ...
为什么梯度反方向是函数值下降最快的方向? 在学习机器学习算法的时候,很多训练算法用的就是梯度下降,然后很多资料也说朝着梯度的反方向变动,函数值下降最快,但是究其原因的时候,很多人都表达不清楚,其中当然包括我了。所以就搬运了几篇博客文章(总有一款适合自己),学习一下为什么梯度反方向是函数值局部 ...
先来回顾一下什么是梯度: 对多元函数的参数求偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度 。 接下来看一下什么是导数和偏导数: 我们知道,函数在某一点的导数就是该函数所代表的曲线在这一点上的变化率。而偏导数涉及到至少两个自变量,因此,从导数到偏导数,就是从曲线变成了曲面 ...
什么是梯度? 首先梯度是一个向量,其次梯度是多元函数对各个分量求偏导数得到的向量,但是这里很容易和切向量混淆。切向量是对各个分量对共同的自变量求偏导,这是不同之处。 为什么梯度垂直于切平面? 首先引入等值面的概念,对于函数W,比如说W = c的所有解是一个等值面。 在c等值面上假设 ...
1)计算梯度幅值函数magnitude 该函数根据输入的微分处理后的x和y来计算梯度幅值,x和y可以通过sobel, scharr等边缘算子求得,而且可以直接输入三通道图像。 2)计算梯度幅值和梯度方向函数cartToPolar 该函数的输入与magnitude ...
符号变量存入矩阵,便于计算高维函数梯度的求解 定义方式: for i = 1:n x(i) = syms(['x' num2str(i)]);end 以n维Hager函数为例, f=sum(exp(xi)-sqrt(i)*xi) 梯度函数: for i ...