@ 目录 一、简介 二、原理 三、网络结构 四、实例:自动生成数字0-9 五、训练GAN的技巧 六、源码 打赏 一、简介 ●lan Goodfellow 2014年提出 ●非监督式学习任务 ●使用两个深度神经网络: Generator ...
转自:https: zhuanlan.zhihu.com p 生成对抗网络GAN是由蒙特利尔大学Ian Goodfellow教授和他的学生在 年提出的机器学习架构。 要全面理解生成对抗网络,首先要理解的概念是监督式学习和非监督式学习。监督式学习是指基于大量带有标签的训练集与测试集的机器学习过程,比如监督式图片分类器需要一系列图片和对应的标签 猫 , 狗 ,而非监督式学习则不需要这么多额外的工作,它 ...
2017-06-21 21:15 0 3780 推荐指数:
@ 目录 一、简介 二、原理 三、网络结构 四、实例:自动生成数字0-9 五、训练GAN的技巧 六、源码 打赏 一、简介 ●lan Goodfellow 2014年提出 ●非监督式学习任务 ●使用两个深度神经网络: Generator ...
生成对抗网络(Generative Adversarial Networks, GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的学习方法 ...
1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略 ...
生成对抗网络通过一个对抗步骤来估计生成模型,它同时训练两个模型:一个是获取数据分布的生成模型$G$,一个是估计样本来自训练数据而不是$G$的概率的判别模型$D$。$G$的训练步骤就是最大化$D$犯错的概率。这个框架对应于一个二元极小极大博弈。在任意函数$G$和$D$的空间中,存在唯一解,$G ...
1. Basic idea 基本任务:要得到一个generator,能够模拟想要的数据分布。(一个低维向量到一个高维向量的映射) discriminator就像是一个score function。 如果想让generator生成想要的目标数据,就把 ...
生成对抗网络GAN(Generative Adversarial Network) 2014年Szegedy在研究神经网络的性质时,发现针对一个已经训练好的分类模型,将训练集中样本做一些细微的改变会导致模型给出一个错误的分类结果,这种虽然发生扰动但是人眼可能识别不出来 ...
, 266100, China 最近看的一篇关于生成对抗网络在股票市场预测中的运用的文献,是由中 ...