)。 因而,一个epoch内,就要处理多个batch。 batch_size表示的是,每个batch内有多 ...
epoch:训练时,所有训练图像通过网络训练一次 一次前向传播 一次后向传播 测试时,所有测试图像通过网络一次 一次前向传播 。Caffe不用这个参数。 batch size: 个batch包含的图像数目,通常设为 的n次幂,常用的包括 , , 。 网络较小时选用 ,较大时选用 。 iteration :训练时, 个batch训练图像通过网络训练一次 一次前向传播 一次后向传播 ,每迭代一次权重更 ...
2017-06-19 22:58 0 3109 推荐指数:
)。 因而,一个epoch内,就要处理多个batch。 batch_size表示的是,每个batch内有多 ...
一、epoch、batch_size和iteration名词解释,关系描述 epoch:所有的样本空间跑完一遍就是一个epoch; batch_size:指的是批量大小,也就是一次训练的样本数量。我们训练的时候一般不会一次性将样本全部输入模型,而是分批次的进行训练,每一批里的样本 ...
batch_size 单次训练用的样本数,通常为2^N,如32、64、128... 相对于正常数据集,如果过小,训练数据就收敛困难;过大,虽然相对处理速度加快,但所需内存容量增加。 使用中需要根据计算机性能和训练次数之间平衡。 epoch 1 epoch = 完成一次全部 ...
写在前面: 从别处复制过来,感觉写的清晰明了,当作复习材料,原作者链接在文末。 在训练神经网络的时候,我们难免会看到Batch、Epoch和Iteration这几个概念。曾对这几个概念感到模糊,看了网上的一些文章后,在这里做几个小小的总结。 👉如有错误之处,还望指出。 名词解释 ...
Batch_Size(批尺寸)是机器学习中一个重要参数,涉及诸多矛盾,下面逐一展开。 首先,为什么需要有 Batch_Size 这个参数? Batch 的选择,首先决定的是下降的方向。如果数据集比较小,完全可以采用全数据集 ( Full Batch Learning )的形式,这样做至少有 ...
Batch Size:批尺寸。机器学习中参数更新的方法有三种: (1)Batch Gradient Descent,批梯度下降,遍历全部数据集计算一次损失函数,进行一次参数更新,这样得到的方向能够更加准确的指向极值的方向,但是计算开销大,速度慢; (2)Stochastic Gradient ...
显存占用 = 模型显存占用 + batch_size × 每个样本的显存占用时间更宝贵,尽可能使模型变快(减少 flop)显存占用不是和 batch size 简单成正比,模型自身的参数及其延伸出来的数据也要占据显存batch size 越大,速度未必越快。在你充分利用计算资源的时候,加大 ...