本文介绍文本挖掘与文本分类的一些基本概念和流程,为后续学习分类算法做好铺垫。 一. 文本挖掘的概念 文本挖掘(Text Mining)是从非结构化文本信息中获取用户感兴趣或者有用的模式 的过程。其中被普遍认可的文本挖掘定义如下:文本挖掘是指从大量文本数据中抽取事先未知的、可理解 ...
. 输入文本预处理, 通过jieba分词, 空格 拼接文本串. 每行一个样本, 最后一个单词为双下划线表明label, label xxx . eg: . pip install fasttext, 利用fasttext 的python 包进行分类. 简单高效, 结果也不差.good luck 参考: https: pypi.python.org pypi fasttext http: www. ...
2017-06-17 19:27 0 2710 推荐指数:
本文介绍文本挖掘与文本分类的一些基本概念和流程,为后续学习分类算法做好铺垫。 一. 文本挖掘的概念 文本挖掘(Text Mining)是从非结构化文本信息中获取用户感兴趣或者有用的模式 的过程。其中被普遍认可的文本挖掘定义如下:文本挖掘是指从大量文本数据中抽取事先未知的、可理解 ...
目录 代码分解 utils train_eval models.TextCNN main 在GPU下的运行结果 代 ...
这这一篇博客中,将系统介绍中文文本分类的流程和相关算法。先从文本挖掘的大背景开始,以文本分类算法为中心,介绍中文文本分类项目的流程以及相关知识,知识点涉及中文分词,向量空间模型,TF-IDF方法,几个典型的文本分类算法和评价指标等。 本篇主要有: 朴素的贝叶斯算法 ...
深度学习近一段时间以来在图像处理和NLP任务上都取得了不俗的成绩。通常,图像处理的任务是借助CNN来完成的,其特有的卷积、池化结构能够提取图像中各种不同程度的纹理、结构,并最终结合全连接网络实现信息的汇总和输出。RNN由于其记忆功能为处理NLP中的上下文提供了途径。 在短文本分析任务中 ...
文本分类是自然语言处理中一个非常经典的任务,可用的模型非常多,相关的开源代码也非常多了。这篇博客用一个CNN模型,对新闻文本进行分类。 全部代码有4个模块:1、数据处理模块(命名为:cnews_loader.py) ;2、模型搭建模块(命名为cnn_model.py);3、模型运行模块(命名为 ...
RNN模型由于具有短期记忆功能,因此天然就比较适合处理自然语言等序列问题,尤其是引入门控机制后,能够解决长期依赖问题,捕获输入样本之间的长距离联系。本文的模型是堆叠两层的LSTM和GRU模型,模型的结 ...
详细使用说明:http://textgrocery.readthedocs.io/zh/latest/index.html TextGrocery是一个基于LibLinear和结巴分词的短文本分类工具,特点是高效易用,同时支持中文和英文语料。 GitHub项目链接 需要安装 ...
摘抄 1. 爬取京东商品评论 JD.py list列表中是传入的商品类别(如手机、电脑),其中getData的参数是 (maxPage, score) maxPage是爬取评论的最 ...