1. 算法原理 1.1 概述 人工神经网络无需事先确定输入输出之间映射关系的数学方程,仅通过自身的训练,学习某种规则,在给定输入值时得到最接近期望输出值的结果。作为一种智能信息处理系统,人工神经网络实现其功能的核心是算法。BP神经网络是一种按误差反向传播(简称误差反传)训练的多层前馈网络 ...
第一种 用神经网络解决异或问题 clear clc close ms 设置 个样本 a 设置输入向量 y , , , 设置输出向量 n 输入量的个数 m 隐层量的个数 k 输出层的个数 w rand n,m 为输入层到隐层的权值赋初值 v rand m,k 为隐层到输出层的权值赋权值 yyuzhi rand ,m 为输入层到隐层的阈值赋初值 scyuzhi rand , 为隐层到输出层的阈值赋权值 ...
2017-06-15 20:26 3 2620 推荐指数:
1. 算法原理 1.1 概述 人工神经网络无需事先确定输入输出之间映射关系的数学方程,仅通过自身的训练,学习某种规则,在给定输入值时得到最接近期望输出值的结果。作为一种智能信息处理系统,人工神经网络实现其功能的核心是算法。BP神经网络是一种按误差反向传播(简称误差反传)训练的多层前馈网络 ...
本文是学习B站老哥数学建模课程之后的一点笔记。 BP(back propagation)算法神经网络的简单原理 BP神经网络是一种采用BP学习算法(按照误差逆向传播训练)的多层前馈神经网络,是应用最广泛的神经网络。 神经网络基本结构如下: 共分为三层,可以理解为一组输入 ...
反向传播算法(Back Propagation)分二步进行,即正向传播和反向传播。这两个过程简述如下: 1.正向传播 输入的样本从输入层经过隐单元一层一层进行处理,传向输出层;在逐层处理的过程中。在输出层把当前输出和期望输出进行比较,如果现行输出不等于期望输出,则进入反向传播过程。 2.反向 ...
一、BP算法的意义 对于初学者来说,了解了一个算法的重要意义,往往会引起他对算法本身的重视。BP(Back Propagation,后向传播)算法,具有非凡的历史意义和重大的现实意义。 1.1、历史意义 1969年,作为人工神经网络创始人的明斯基(Marrin M ...
前言:最近接触到一些神经网络的东西,看到很多人使用PSO(粒子群优化算法)优化BP神经网络中的权值和偏置,经过一段时间的研究,写了一些代码,能够跑通,嫌弃速度慢的可以改一下训练次数或者适应度函数。 在我的理解里,PSO优化BP的初始权值w和偏置b,有点像数据迁徙,等于用粒子 ...
MATLAB 中BP神经网络算法的实现 BP神经网络算法提供了一种普遍并且实用的方法从样例中学习值为实数、离散值或者向量的函数,这里就简单介绍一下如何用MATLAB编程实现该算法 ...
神经网络(包括异或逻辑)的训练而造成了一场ANN危机,到最后BP算法的出现,才让训练带有隐藏层的多层神 ...
前言: 这个博客是为了解决异或问题,原理是利用非线性的量来进行划分,和前面的知识有些类似。 正文: 总结: 这个专门用来解决异或问题,和单层感知器的知识有所不同的是用了不同的激活函数,以及用n来计数,引入了6个输入量,相当于在求解一个二次方程(关于y的二次方程),再利用求根 ...