原文:Batch normalization:accelerating deep network training by reducing internal covariate shift的笔记

说实话,这篇paper看了很久,,到现在对里面的一些东西还不是很好的理解。 下面是我的理解,当同行看到的话,留言交流交流啊 这篇文章的中心点:围绕着如何降低 internal covariate shift 进行的, 它的方法就是进行batch normalization。 internal covariate shift 和 batch normalization . 什么是 internal ...

2017-06-15 11:14 0 1257 推荐指数:

查看详情

Batch Normalization原理及其TensorFlow实现——为了减少深度神经网络中的internal covariate shift,论文中提出了Batch Normalization算法,首先是对”每一层“的输入做一个Batch Normalization 变换

批标准化(Bactch Normalization,BN)是为了克服神经网络加深导致难以训练而诞生的,随着神经网络深度加深,训练起来就会越来越困难,收敛速度回很慢,常常会导致梯度弥散问题(Vanishing Gradient Problem)。 统计机器学习中有一个经典的假设 ...

Thu Mar 08 23:26:00 CST 2018 1 7488
ICLR 2018 | Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training

为了降低大规模分布式训练时的通信开销,作者提出了一种名为深度梯度压缩(Deep Gradient Compression, DGC)的方法。DGC通过稀疏化技术,在每次迭代时只选择发送一部分比较“重要”的梯度元素,以达到降低整个训练过程通信量的目的。为了保证使用DGC后模型的精度,作者还使用了几种 ...

Mon May 25 02:33:00 CST 2020 0 1221
论文笔记Batch Normalization

在神经网络的训练过程中,总会遇到一个很蛋疼的问题:梯度消失/爆炸。关于这个问题的根源,我在上一篇文章的读书笔记里也稍微提了一下。原因之一在于我们的输入数据(网络中任意层的输入)分布在激活函数收敛的区域,拿 sigmoid 函数举例: 如果数据分布在 [-4, 4] 这个区间两侧 ...

Sun Jan 07 22:31:00 CST 2018 0 1677
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM