Awesome GAN for Medical Imaging 2018-08-10 09:32:43 This blog is copied from: https://github.com/xinario/awesome-gan ...
生成式对抗网络 GAN 是近年来大热的深度学习模型。最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN。 本文主要分为三个部分: 介绍原始的GAN的原理 同样非常重要的DCGAN的原理 如何在Tensorflow跑DCGAN的代码,生成如题图所示的动漫头像,附送数据集哦 : GAN原理介绍 说到GAN第一篇要看的paper当然是Ian Goodfellow大牛 ...
2017-06-11 22:27 0 1569 推荐指数:
Awesome GAN for Medical Imaging 2018-08-10 09:32:43 This blog is copied from: https://github.com/xinario/awesome-gan ...
概述GAN(Generative Adversarial Network,生成对抗网络)是一个网络框架,它通常包括两部分,生成器(generator)和判别器(discriminator)。生成器的作用是学习真实数据的分布(或者通俗地说就是学习真实数据的特征),然后自动地生成新的数据 ...
本文转自: https://mp.weixin.qq.com/s?__biz=MzA5MDMwMTIyNQ==&mid=2649290778&idx=1&sn=9816b862e167c4792f4251c199fcae16& ...
本文转自:http://www.360doc.com/content/17/0212/11/35919193_628410589.shtml# 看穿机器学习 ...
把GAN的论文看完了, 也确实蛮厉害的懒得写笔记了,转一些较好的笔记,前面先贴一些 原论文里推理部分,进行备忘。 GAN的解释 算法流程 GAN的理论推理 转自:https://zhuanlan.zhihu.com/p/27295635 Generative ...
GAN 原始GAN中判别器要最小化如下损失函数,尽可能把真实样本分为正例,生成样本分为负例: 其中是真实样本分布,是由生成器产生的样本分布。 第一个式子我们不看梯度符号的话即为判别器的损失函数,logD(xi)为判别器将真实数据判定为真实数据的概率,log(1-D(G(zi ...
本文转自:https://mp.weixin.qq.com/s?__biz=MzIwMTgwNjgyOQ==&mid=2247484846&idx=1&sn=c2333a9986c19e7106ae94d14a0555b9 能根据文字生成图片的 GAN,深度 ...
Generative Adversarial Networks GAN框架 GAN框架是有两个对象(discriminator,generator)的对抗游戏。generator是一个生成器,generator产生来自和训练样本一样的分布的样本 ...