KNN是有监督的学习算法,其特点有: 1、精度高,对异常值不敏感 2、只能处理数值型属性 3、计算复杂度高(如已知分类的样本数为n,那么对每个未知分类点要计算n个距离) KNN算法步骤: 需对所有样本点(已知分类+未知分类)进行归一化 ...
不多说,直接上干货 这里,对于想用matlab语言来做的朋友,强烈推荐 http: www.cnblogs.com tornadomeet ...
2017-06-09 15:14 0 6040 推荐指数:
KNN是有监督的学习算法,其特点有: 1、精度高,对异常值不敏感 2、只能处理数值型属性 3、计算复杂度高(如已知分类的样本数为n,那么对每个未知分类点要计算n个距离) KNN算法步骤: 需对所有样本点(已知分类+未知分类)进行归一化 ...
python基础 图像基础 图像的主要用途:分类、目标检测、图像分割、图像描述、图像生成 相关的组件:OpenCV、Tensorflow、Keras 图像的预处理:平滑与去噪——高斯 ...
<转>机器学习系列(9)_机器学习算法一览(附Python和R代码) 转自http://blog.csdn.net/han_xiaoyang/article/details/51191386 – 谷歌的无人车和机器人得到了很多关注,但我 ...
函数的推理及常用的核函数有哪些;第四部分是支持向量机的应用,按照机器学习实战的代码详细解读。 机器学 ...
本文讲梯度下降(Gradient Descent)前先看看利用梯度下降法进行监督学习(例如分类、回归等)的一般步骤: 1, 定义损失函数(Loss Function) 2, 信息流forward propagation,直到输出端 3, 误差信号back propagation。采用 ...
Twritters的异常检测算法(Anomaly Detection)做的比较好,Seasonal Hybrid ESD算法是先用STL把序列分解,考察残差项。假定这一项符合正态分布,然后就可以用 ...
本人以前主要focus在传统音频的软件开发,接触到的算法主要是音频信号处理相关的,如各种编解码算法和回声消除算法等。最近切到语音识别上,接触到的算法就变成了各种机器学习算法,如GMM等。K-means作为其中比较简单的一种肯定是要好好掌握的。今天就讲讲K-means的基本原理和代码实现 ...
1、介绍 决策树(decision tree)是一种有监督的机器学习算法,是一个分类算法。在给定训练集的条件下,生成一个自顶而下的决策树,树的根为起点,树的叶子为样本的分类,从根到叶子的路径就是一个样本进行分类的过程。 下图为一个决策树 ...