转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初始化参数:args = parse_args() 采用的是Python ...
转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初始化参数:args = parse_args() 采用的是Python ...
1.faster_rcnn_end2end训练 1.1训练入口及配置 1.2 数据准备 从train_net.py:combined_roidb(imdb_name)处开始,得到的是gt数据集。 输入:“voc_2007_trainval ...
这段时间看了不少论文,回头看看,感觉还是有必要将Faster rcnn的源码理解一下,毕竟后来很多方法都和它有相近之处,同时理解该框架也有助于以后自己修改和编写自己的框架。好的开始吧~ 这里我们跟着Faster rcnn的训练流程来一步一步梳理,进入tools ...
接着上篇的博客,咱们继续看一下Faster RCNN的代码~ 上次大致讲完了Faster rcnn在训练时是如何获取imdb和roidb文件的,主要都在train_rpn()的get_roidb()函数中,train_rpn()函数后面的部分基本没什么需要讲的了,那我们再回到训练流程中 ...
紧接着之前的博客,我们继续来看faster rcnn中的AnchorTargetLayer层: 该层定义在lib>rpn>中,见该层定义: 首先说一下这一层的目的是输出在特征图上所有点的anchors(经过二分类和回归); (1)输入blob:bottom[0]储存特征图信息 ...
上一篇我们说完了AnchorTargetLayer层,然后我将Faster rcnn中的其他层看了,这里把ROIPoolingLayer层说一下; 我先说一下它的实现原理:RPN生成的roi区域大小是对应与输入图像大小(而且每一个roi大小都不同,因为先是禅城九种anchors,又经过回归 ...
代码来源: https://github.com/jwyang/faster-rcnn.pytorch 一、EasyDict 和 yaml 作者是使用EasyDict进行导入参数的 # `pip install easydict` if you don't have ...
本文结合CVPR 2018论文"Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships",详细解析Faster RCNN(tensorflow版本)代码 ...