数据标准化是数据预处理的重要步骤。 sklearn.preprocessing下包含 StandardScaler, MinMaxScaler, RobustScaler三种数据标准化方法。本文结合sklearn文档,对各个标准化方法的应用场景以及优缺点加以总结概括。 首先,不同类型的机器学习 ...
源:为什么一些机器学习模型需要对数据进行归一化 zhanlijun 博客园 归一化为什么能提高梯度下降法求解最优解的速度 斯坦福机器学习视频做了很好的解释:https: class.coursera.org ml lecture 如下图所示,蓝色的圈圈图代表的是两个特征的等高线。其中左图两个特征X 和X 的区间相差非常大,X 区间是 , ,X 区间是 , ,其所形成的等高线非常尖。当使用梯度下降 ...
2017-06-01 14:05 0 5293 推荐指数:
数据标准化是数据预处理的重要步骤。 sklearn.preprocessing下包含 StandardScaler, MinMaxScaler, RobustScaler三种数据标准化方法。本文结合sklearn文档,对各个标准化方法的应用场景以及优缺点加以总结概括。 首先,不同类型的机器学习 ...
在进行数据分析或者机器学习时,通常需要对数据进行预处理,其中主要的步骤就是数据标准化/归一化。 常用的数据标准化和归一化方法主要有: 1. 最大最小标准化 y=(x-min(x))/(max(x)-min(x)),x为一序列,即x={x1,x2,x3......},max(x)为最大值 ...
同渠道,不同量级的数据转化到统一的范围之内,方便后续的分析处理。 数据变换的方法有很多,比如数据平 ...
数据标准化/归一化normalization 转自:数据标准化/归一化normalization 这里主要讲连续型特征归一化的常用方法。离散参考[数据预处理:独热编码(One-Hot Encoding)]。 基础知识参考: [均值、方差 ...
算法需要非常多次的迭代才能收敛。 归一化方法 1.最大值最小值归一化: \[\frac{x- ...
参数的标准化与归一化 注:中文资料中从英文文献中学习,提到normalization和standardization时候,往往将其翻译为“标准化”和“归一化”。但是很坑的一点是,由于翻译软件也没有很好的区分两者,所以几乎所有人都将两者混为一谈,甚至A文章对于“标准化”和“归一化”翻译 ...
级的数据转化到统一的范围之内,方便后续的分析处理。 数据变换的方法有很多,比如数据平滑,数据聚集,数据 ...
数据的标准化 在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。 数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总 ...