原文:什么是反向传播

什么是反向传播 作者:韩小雨 类别: 反向传播算法 反向传播模型 反向传播算法 英:Backpropagation algorithm,简称:BP算法 算法简介:是一种监督学习算法,常被用来训练多层感知机。 于 年,Paul Werbos 首次给出了如何训练一般网络的学习算法,而人工神经网络只是其中的特例。不巧的,在当时整个人工神经网络社群中却无人知晓Paul所提出的学习算法。直到 年代中期,BP ...

2017-05-31 08:54 22 298 推荐指数:

查看详情

前向传播反向传播

前向传播 通过输入样本x及参数\(w^{[1]}\)、\(b^{[1]}\)到隐藏层,求得\(z^{[1]}\),进而求得\(a^{[1]}\); 再将参数\(w^{[2]}\)、\(b^{[2]}\)和\(a^{[1]}\)一起输入输出层求得\(z^{[2]}\),进而求得 ...

Wed Apr 10 22:33:00 CST 2019 0 968
反向传播算法为什么要“反向

反向传播算法是深度学习的最重要的基础,这篇博客不会详细介绍这个算法的原理和细节。,如果想学习反向传播算法的原理和细节请移步到这本不错的资料。这里主要讨论反向传播算法中的一个小细节:反向传播算法为什么要“反向”? 背景 在机器学习中,很多算法最后都会转化为求一个目标损失函数(loss ...

Fri Feb 01 23:27:00 CST 2019 0 4926
4-2 前向传播反向传播

前向传播反向传播( Forward and backward propagation) 前向传播 假设输入${a^{[l - 1]}}$,输出${a^{[l]}}$,缓存${z^{[l]}}$,从实现的角度来说缓存${w^{[l]}}$,${b^{[l]}}$更容易在不同的环节调用函数 ...

Sat Aug 25 22:56:00 CST 2018 0 1013
反向传播算法

反向传播算法 介绍   反向传播算法,简称BP算法,适合于多层神经元网络的一种学习算法,它建立在梯度下降法的基础上。BP网络的输入输出关系实质上是一种映射关系:一个n输入m输出的BP神经网络所完成的功能是从n维欧氏空间向m维欧氏空间中一有限域的连续映射,这一映射具有高度非线性。它的信息处理能力 ...

Sat Feb 12 05:20:00 CST 2022 0 1021
Backward Propagation 反向传播

深度学习神经网络训练过程主要涉及到两个过程,一个是数据前向传播(data forward-propagation),输入数据经过网络正向计算,输出最终结果;另一个是误差反向传播(error backward-propagation),网络输出结果的误差和梯度反向传播,并更新权重。反向传播过程又可 ...

Sat Aug 21 18:26:00 CST 2021 0 95
反向传播算法

反向传播算法, Backpropagation, BP 1986年, Hinton, 深度学习之父, 和他的合作者发表了论文"Learning Representations by Back-propagating errors", 首次系统地描述了如何利用BP算法有训练神经网络. 从这 ...

Sun May 29 00:59:00 CST 2016 3 4289
反向传播算法推导

一、MSE 损失函数推导 前向传播过程: 梯度反向传播公式推导: 定义残差: 则 残差推导如下: 对于最后一层: 广义上,左边项(-(···))是定义的损失函数对其输入(即最后一层神经元值)的导数,右项是sigmoind求导,这两项都是 ...

Sat Feb 23 17:18:00 CST 2019 0 995
反向传播算法

假设,你有这样一个网络层:   第一层是输入层,包含两个神经元i1,i2,和截距项b1;第二层是隐含层,包含两个神经元h1,h2和截距项b2,第三层是输出o1,o2,每条线上标的wi是层与层之间 ...

Tue Apr 02 05:30:00 CST 2019 0 2160
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM