在数据挖掘的知识模式中,关联规则模式是比较重要的一种。关联规则的概念由Agrawal、Imielinski、Swami 提出,是数据中一种简单但很实用的规则。关联规则模式属于描述型模式,发现关联规则的算法属于无监督学习的方法。 一、关联规则的定义和属性 考察一些涉及许多物品的事务:事务 ...
在各种数据挖掘算法中,关联规则挖掘算是比較重要的一种,尤其是受购物篮分析的影响,关联规则被应用到非常多实际业务中,本文对关联规则挖掘做一个小的总结。 首先,和聚类算法一样,关联规则挖掘属于无监督学习方法,它描写叙述的是在一个事物中物品间同一时候出现的规律的知识模式,现实生活中,比方超市购物时,顾客购买记录经常隐含着非常多关联规则。比方购买圆珠笔的顾客中有 也购买了笔记本。利用这些规则。商场人员能 ...
2017-05-25 21:04 0 2540 推荐指数:
在数据挖掘的知识模式中,关联规则模式是比较重要的一种。关联规则的概念由Agrawal、Imielinski、Swami 提出,是数据中一种简单但很实用的规则。关联规则模式属于描述型模式,发现关联规则的算法属于无监督学习的方法。 一、关联规则的定义和属性 考察一些涉及许多物品的事务:事务 ...
名词: 挖掘数据集:购物篮数据 挖掘目标:关联规则 关联规则:啤酒=>尿布(支持度0.02,置信度0.6) 支持度:所有数据中有2%的购物记录包含了啤酒和尿布 置信度:所有包含啤酒的购物记录里有60%包含尿布 最小支持度阈值和最小置信度阈值。 项集:项(商品)组成的集合 K- ...
数据挖掘算法-Apriori Algorithm(关联规则) Apriori algorithm是关联规则里一项基本算法。是由Rakesh Agrawal和Ramakrishnan Srikant两位博士在1994年提出的关联规则挖掘算法。关联规则的目的就是在一个数据集中找出项与项 ...
上一篇介绍了关联规则挖掘的一些基本概念和经典的Apriori算法,Aprori算法利用频繁集的两个特性,过滤了很多无关的集合,效率提高不少,但是我们发现Apriori算法是一个候选消除算法,每一次消除都需要扫描一次所有数据记录,造成整个算法在面临大数据集时显得无能为力。今天我们介绍一个新的算法 ...
1.关联规则分析的定义 关联分析(Association Analysis)用于发现隐藏在大型数据集中的令人感兴趣的联系。联系的表示方式一般为关联规则或频繁项集,例:{尿布}→{啤酒}。 2.关联规则分析的基本概念 项集:项的集合称为项集。一个包含k个数据项的项集就称为k−项集。 项集 ...
相对于机器学习,关联规则的apriori算法更偏向于数据挖掘。 1) 测试文档中调用weka的关联规则apriori算法,如下 步骤 1 读取数据集data,并提取样本集instances 2 离散化属性Discretize 3 创建Apriori ...
浅谈数据挖掘中的关联规则挖掘 数据挖掘是指以某种方式分析数据源,从中发现一些潜在的有用的信息,所以数据挖掘又称作知识发现,而关联规则挖掘则是数据挖掘中的一个很重要的课题,顾名思义,它是从数据背后发现事物之间可能存在的关联或者联系。举个最简单的例子 ...
浅谈数据挖掘中的关联规则挖掘 数据挖掘是指以某种方式分析数据源,从中发现一些潜在的有用的信息,所以数据挖掘又称作知识发现,而关联规则挖掘则是数据挖掘中的一个很重要的课题,顾名思义,它是从数据背后发现事物之间可能存在的关联或者联系。举个最简单的例子 ...