原文:机器学习:Python实现聚类算法(一)之K-Means

.简介 K means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。 . 算法大致流程为: 随机选取k个点作为种子点 这k个点不一定属于数据集 分别计算每个数据点到k个种子点的距离,离哪个种子点最近,就属于哪类 重新计算k个种子点 ...

2017-05-23 14:20 0 14017 推荐指数:

查看详情

机器学习K-means聚类算法与EM算法

初始目的   将样本分成K个类,其实说白了就是求一个样本例的隐含类别y,然后利用隐含类别将x归类。由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎样评价假定的好不好呢?   我们使用样本的极大似然估计来度量,这里就是x和y的联合分布P(x,y ...

Tue Jun 20 05:12:00 CST 2017 0 1790
机器学习-聚类(clustering)算法K-means算法

1. 归类: 聚类(clustering):属于非监督学习(unsupervised learning) 无类别标记(class label) 2. 举例: 3. Kmeans算法 3.1 clustering中的经典算法 ...

Tue Mar 05 03:13:00 CST 2019 0 1860
机器学习六--K-means聚类算法

机器学习六--K-means聚类算法 想想常见的分类算法有决策树、Logistic回归、SVM、贝叶斯等。分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足 ...

Fri Oct 30 10:03:00 CST 2015 1 20737
Python机器学习实战】聚类算法(1)——K-Means聚类

实战部分主要针对某一具体算法对其原理进行较为详细的介绍,然后进行简单地实现(可能对算法性能考虑欠缺),这一部分主要介绍一些常见的一些聚类算法K-means聚类算法 0.聚类算法算法简介   聚类算法算是机器学习中最为常见的一类算法,在无监督学习中,可以说聚类算法有着举足轻重的地位 ...

Tue Dec 07 07:45:00 CST 2021 0 2534
机器学习 - k-means聚类

k-means简介 k-means是无监督学习下的一种聚类算法,简单说就是不需要数据标签,仅靠特征值就可以将数据分为指定的几类。k-means算法的核心就是通过计算每个数据点与k个质心(或重心)之间的距离,找出与各质心距离最近的点,并将这些点分为该质心所在的簇,从而实现聚类的效果 ...

Wed Aug 04 22:48:00 CST 2021 0 250
机器学习-K-means聚类算法实现(基于R语言)

K-means聚类 将n个观测点,按一定标准(数据点的相似度),划归到k聚类(用户划分、产品类别划分等)中。 重要概念:质心 K-means聚类要求的变量是数值变量,方便计算距离。 算法实现 R语言实现 k-means算法是将数值转换为距离,然后测量距离远近 ...

Sun Jun 09 01:50:00 CST 2019 0 3220
机器学习K-means聚类算法原理及C语言实现

本人以前主要focus在传统音频的软件开发,接触到的算法主要是音频信号处理相关的,如各种编解码算法和回声消除算法等。最近切到语音识别上,接触到的算法就变成了各种机器学习算法,如GMM等。K-means作为其中比较简单的一种肯定是要好好掌握的。今天就讲讲K-means的基本原理和代码实现 ...

Mon Jul 08 06:28:00 CST 2019 1 1971
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM