原文:损失函数(Loss Function)

线性回归中提到最小二乘损失函数及其相关知识。对于这一部分知识不清楚的同学可以参考上一篇文章 线性回归 梯度下降 。本篇文章主要讲解使用最小二乘法法构建损失函数和最小化损失函数的方法。 最小二乘法构建损失函数 最小二乘法也一种优化方法,用于求得目标函数的最优值。简单的说就是:让我们的预测值与真实值总的拟合误差 即总残差 达到最小。 在线性回归中使用最小二乘法构建了损失函数: 上一篇文章 线性回归 梯 ...

2017-05-18 14:48 0 7334 推荐指数:

查看详情

损失函数Loss Function

转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 线性回归中提到最小二乘损失函数及其相关知识。对于这一部分知识不清楚的同学可以参考上一篇文章《线性回归、梯度下降》。本篇文章主要讲解使用最小二乘法法构建损失函数和最小化损失函数的方法 ...

Wed Aug 05 02:04:00 CST 2015 0 4305
损失函数(Loss Function) -1

http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 损失函数可以看做 误差部分(loss term) + 正则化部分 ...

Sun Nov 09 02:30:00 CST 2014 0 63446
损失函数(Loss Function) -1

http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 损失函数可以看做 误差 ...

Thu Aug 18 03:54:00 CST 2016 1 7599
损失函数(loss function)

通常而言,损失函数损失项(loss term)和正则项(regularization term)组成。发现一份不错的介绍资料: http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures ...

Sun Oct 09 00:01:00 CST 2016 0 12350
对数损失函数(Logarithmic Loss Function)的原理和 Python 实现

原理   对数损失, 即对数似然损失(Log-likelihood Loss), 也称逻辑斯谛回归损失(Logistic Loss)或交叉熵损失(cross-entropy Loss), 是在概率估计上定义的.它常用于(multi-nominal, 多项)逻辑斯谛回归和神经网络,以及一些期望 ...

Sun Jun 24 02:45:00 CST 2018 2 38891
(三)tensorflow2.0 - 自定义loss function损失函数

前文分别讲了tensorflow2.0中自定义Layer和自定义Model,本文将来讨论如何自定义损失函数。 (一)tensorflow2.0 - 自定义layer (二)tensorflow2.0 - 自定义Model (三)tensorflow2.0 - 自定义loss ...

Mon Feb 03 20:24:00 CST 2020 1 2940
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM