牛顿迭代法,又名切线法,这里不详细介绍,简单说明每一次牛顿迭代的运算:首先将各个方程式在一个根的估计值处线性化(泰勒展开式忽略高阶余项),然后求解线性化后的方程组,最后再更新根的估计值。下面以求解最简单的非线性二元方程组为例(平面二维定位最基本原理),贴出源代码: 1、新建函数fun.m,定义 ...
近期一个哥们。是用牛顿迭代法求解一个四变量方程组的最优解问题,从网上找了代码去改进。可是总会有点不如意的地方。迭代的次数过多。可是却没有提高精度,真是令人揪心。 经分析,发现是这个方程组中存在非常多局部的极值点,是用牛顿迭代法不能不免进入局部极值的问题,更程序的初始值有关 发现自己好久没有是用Matlab了。顺便从网上查了查代码,自己来改动一下 先普及一下牛顿迭代法: 来自百度百科 牛顿迭代法 ...
2017-05-17 08:29 0 4887 推荐指数:
牛顿迭代法,又名切线法,这里不详细介绍,简单说明每一次牛顿迭代的运算:首先将各个方程式在一个根的估计值处线性化(泰勒展开式忽略高阶余项),然后求解线性化后的方程组,最后再更新根的估计值。下面以求解最简单的非线性二元方程组为例(平面二维定位最基本原理),贴出源代码: 1、新建函数fun.m,定义 ...
题目:计算sinx=x/2的根。 分析:newton法在大范围的收敛定理: 函数f(x)在区间[a,b]上存在二阶连续导数,且满足4个条件: 1. f(a)*f(b)<0 2. 当x属于[a,b]时,函数的导数值不等于零。 3. 当x属于[a,b ...
函数文件: 脚本文件: tic;clear clcsyms x y;h='[x^2+y^2-4;x^2-y^2-1]';initial_value=[1.6;1.2];n=2;%方程组的未知数的个数 g=newton_Iterative_method(h,n ...
前言 在实际项目的一些矩阵运算模块中,往往需要对线性方程组进行求解以得到最终结果。 然而,你无法让计算机去使用克莱默法则或者高斯消元法这样的纯数学方法来进行求解。 计算机解决这个问题的方法是迭代法。本文将介绍三种最为经典的迭代法并用经典C++源代码实现之。 迭代法简介 ...
大纲 前沿 雅克比迭代法 Matlab 雅克比迭代程序 一、前沿 谈到雅克比迭代法,首先就谈下迭代法的基本原理 设线性方程组 Ax = b 系数 ...
对于线性方程组的迭代求解方法可以分为两类,静态迭代方法与非静态迭代方法,两者区别在于,前者构造简单,迭代步长与方向恒定,但是收敛条件限制较大,收敛速度较慢。而非静态方法构造格式更复杂,收敛速度更快。本文主要记录静态迭代方法 静态迭代法 考虑以下线性方程组 \[\boldsymbol ...
在辨识工作中,常常需要对辨识准则或者判据进行求极值,这往往涉及到求非线性方程(组)的解问题。牛顿迭代法是一种常用方法。下面把自己对牛顿迭代法的学习和理解做个总结。 1.一元非线性方程的牛顿迭代公式和原理 ...
matlab中有专门的solve函数来解决方程组的(a-x)^2+(b-y)^2=e^2(C-x)^2+(D-y)^2=v^2已知a,b,c,d,e,v 值求解 X,Y 请问用 matlab 如何写,就是求2个园的交点问题。仿真程序为:global a b c d e v;>> ...