转自 http://blog.csdn.net/sinat_33741547/article/details/53002524 一 基本概念 基于图的模型是推荐系统中相当重要的一种方法,以下内容的基本思想是将用户行为数据表示为一系列的二元组,每一个二元组(u,i)代表用户u对物品i产生过行为 ...
转自 http: blog.csdn.net sinat article details 一 基本概念 基于图的模型是推荐系统中相当重要的一种方法,以下内容的基本思想是将用户行为数据表示为一系列的二元组,每一个二元组 u,i 代表用户u对物品i产生过行为,这样便可以将这个数据集表示为一个二分图。 假设我们有以下的数据集,只考虑用户喜不喜欢该物品而不考虑用户对物品的喜欢程度, 其中用户user A, ...
2017-05-15 16:58 0 1344 推荐指数:
转自 http://blog.csdn.net/sinat_33741547/article/details/53002524 一 基本概念 基于图的模型是推荐系统中相当重要的一种方法,以下内容的基本思想是将用户行为数据表示为一系列的二元组,每一个二元组(u,i)代表用户u对物品i产生过行为 ...
上面的二部图表示user A对item a和c感兴趣,B对a b c d都感兴趣,C对c和d感兴趣。本文假设每条边代表的感兴趣程度是一样的。 现在我们要为user A推荐item,实际上就是计算A对所有item的感兴趣程度。在personal rank算法中不区分user节点和item节点 ...
,现在我们要预测U1对五角星的评分是多少。基本思路是:随机选择U1信任的一个用户,比如选择了U2,U2 ...
原文链接:https://www.cnblogs.com/zhangyang520/p/10969951.html 参考回答: 推荐算法: 基于人口学的推荐、基于内容的推荐、基于用户的协同过滤推荐、基于项目的协同过滤推荐、基于模型的协同过滤推荐 ...
一、基于内容推荐 基于内容的推荐(Content-based Recommendation)是信息过滤技术的延续与发展,它是建立在项目的内容信息上作出推荐的,而不需要依据用户对项目的评价意见,更多地需要用机 器学习的方法从关于内容的特征描述的事例中得到用户的兴趣资料。在基于内容的推荐系统中,项目 ...
1、基于人口统计学的推荐 用户画像 2、基于内容的推荐 相似度计算 基于内容的推荐算法 基于内容推荐系统的高层次结构 特征工程 数值型特征处理 归一化 离散化 类别型特征处理 时间型特征处理 ...
方法: 1.强化学习 用户是否点击一系列广告可以看成是一个序列过程,那么推荐广告就是一个序列决策过程。那么是否可以用强化学习来实现广告推荐。基本模型为:Deep Q-learning和LSTM的组合 强化学习的好处是: a、在线学习。对于新用户,我们不知道他的喜好,通过不断的推荐后 ...
1. LR介绍 逻辑回归(logistics regression)作为广义线性模型的一种,它的假设是因变量y服从伯努利分布。那么在点击率预估这个问题上,“点击”这个事件是否发生就是模型的因变量 ...