参数介绍: value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape。 batch 训练时一个batch的图片数量 ...
转载自此大神http: blog.csdn.net mao xiao feng article details max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似 有些地方可以从卷积去参考 TensorFlow tf.nn.conv d是怎样实现卷积的 tf.nn.max pool value, ksize, strides, padding, name None 参数是四个 ...
2017-05-09 21:12 0 5618 推荐指数:
参数介绍: value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape。 batch 训练时一个batch的图片数量 ...
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 介绍参数: input:指卷积需要输入的参数,具有这样的shape[batch, in_height, in_width ...
摘要:池化层的主要目的是降维,通过滤波器映射区域内取最大值、平均值等操作。 均值池化:tf.nn.avg_pool(input,ksize,strides,padding) 最大池化:tf.nn.max_pool(input,ksize,strides,padding) input ...
这个函数的作用是计算激活函数 relu,即 max(features, 0)。将大于0的保持不变,小于0的数置为0。 ...
转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法 ...
: padding 无论取 'SAME' 还是取 'VALID', 它在 conv2d 和 max_pool ...
函数原型为 def reshape(tensor, shape, name=None) 第1个参数为被调整维度的张量。 第2个参数为要调整为的形状。 返回一个shape形状的新tensor 注意shape里最多有一个维度的值可以填写为-1,表示自动计算此维度。 很简单的函数 ...
官方的接口是这样的 tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None) 根据给出的keep_prob参数,将输入tensor x按比例输出。 默认情况下, 每个元素保存或丢弃都是独立的。后面这段没太懂,以后 ...