原文:【机器学习算法-python实现】PCA 主成分分析、降维

.背景 PCA Principal Component Analysis ,PAC的作用主要是减少数据集的维度,然后挑选出基本的特征。 PCA的主要思想是移动坐标轴,找到方差最大的方向上的特征值。什么叫方差最大的方向的特征值呢。就像下图中的曲线B。一样。它的覆盖范围最广。 基本步骤: 首先计算数据集的协方差矩阵 计算协方差矩阵的特征值和特征向量 保留最重要的n个特征 what is 协方差矩阵: ...

2017-05-07 09:51 0 2144 推荐指数:

查看详情

机器学习之路:python 特征降维 成分分析 PCA

python3 学习api使用 成分分析方法实现降低维度 使用了网络上的数据集,我已经下载到了本地,可以去我的git上参考 git:https://github.com/linyi0604/MachineLearning 代码: ...

Mon Apr 30 18:21:00 CST 2018 0 3659
Python机器学习笔记:成分分析PCA算法

一:引入问题   首先看一个表格,下表是某些学生的语文,数学,物理,化学成绩统计:   首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系,那么如何判断三个学生的优秀程度呢?首先我们一眼就能看出来,数学,物理,化学这三门课的成绩构成了这组数据的成分(很显然,数学 ...

Fri Jan 11 04:01:00 CST 2019 0 6325
机器学习】--成分分析PCA降维从初识到应用

一、前述 成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫成分PCA的思想是将n维特征映射到k维上(k<n),这k维是全新的正交特征。这k维特征称为 ...

Tue Apr 10 09:02:00 CST 2018 1 1208
[python机器学习及实践(6)]Sklearn实现成分分析PCA

1.PCA原理 成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫成分PCA算法: 2.PCA实现 数据集: 64维的手写数字图像 代码 ...

Thu Jul 19 19:23:00 CST 2018 1 19742
[机器学习笔记]成分分析PCA简介及其python实现

  成分分析(principal component analysis)是一种常见的数据降维方法,其目的是在“信息”损失较小的前提下,将高维的数据转换到低维,从而减小计算量。   PCA的本质就是找一些投影方向,使得数据在这些投影方向上的方差最大,而且这些投影方向是相互正交的。这其实就是找新 ...

Fri Mar 04 06:04:00 CST 2016 1 38257
coursera机器学习-聚类,降维成分分析

#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得; #注:此笔记是我自己认为本节课里比较重要、难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点; #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末。博能力有限,若有错误,恳请指正; #------------------------------------------------ ...

Mon Dec 16 00:53:00 CST 2013 0 2691
机器学习PCA成分分析

,可以解释为这两个变量反 映此课题的信息有一定的重叠。成分分析是对于原先提出的所有变量,将重复的变量(关 ...

Thu Aug 31 01:39:00 CST 2017 0 9508
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM