用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 ...
转自https: zhuanlan.zhihu.com p 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类领域特别是应用深度学习解决文本分类的相关的思路 做法和部分实践的经验。 业务问题描述: 淘宝商品的一个典型的例子见下图,图中商品的标题是 夏装雪纺条纹短袖t恤女春半袖衣服夏天中长款大码胖mm显瘦上衣夏 。淘宝网后台 ...
2017-04-29 19:07 0 14499 推荐指数:
用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 ...
原文:https://www.leiphone.com/news/201710/lcuWi98knUcroL6j.html 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类领域特别是应用深度学习解决文本分类的相关 ...
https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类领域特别是应用深度学习解决文本分类的相关的思路、做法和部分实践的经验。 业务问题描述: 淘宝 ...
目录 1、HAN 2、inner-attention for NLI 3、Attentive Pooling 4、LEAM 5、DRCN 6、ABCNN 7、Multiway Attention Networks 8、aNMM ...
用于文本分类的RNN-Attention网络 https://blog.csdn.net/thriving_fcl/article/details/73381217 Attention机制在NLP上最早是被用于seq2seq的翻译类任务中,如Neural Machine Translation ...
机器不学习 jqbxx.com -机器学习、深度学习好网站 在最左边的输出层有两个channel,每个channel是一个二维的矩阵,矩阵的列的长度等于语句sentence的长度(也就是sentence中的单词个数,通过padding使得待分类的每个sentence都有相同的长度 ...
一、传统文本分类方法 文本分类问题算是自然语言处理领域中一个非常经典的问题了,相关研究最早可以追溯到上世纪50年代,当时是通过专家规则(Pattern)进行分类,甚至在80年代初一度发展到利用知识工程建立专家系统,这样做的好处是短平快的解决top问题,但显然天花板非常低,不仅费时费力,覆盖 ...
代码仓库: https://github.com/brandonlyg/cute-dl 目标 上阶段cute-dl已经可以构建基础的RNN模型。但对文本相模型的支持不够友好, 这个阶段的目标是, 让框架能够友好地支持文本分类和本文生成任务。具体包括: 添加嵌入层 ...