EM算法一般表述: 当有部分数据缺失或者无法观察到时,EM算法提供了一个高效的迭代程序用来计算这些数据的最大似然预计。在每一步迭代分为两个步骤:期望(Expectation)步骤和最大化(Maximization)步骤,因此称为EM算法 ...
EM算法一般表述: 当有部分数据缺失或者无法观察到时,EM算法提供了一个高效的迭代程序用来计算这些数据的最大似然预计。在每一步迭代分为两个步骤:期望 Expectation 步骤和最大化 Maximization 步骤。因此称为EM算法。 如果所有数据Z是由可观測到的样本X X , X 。 , Xn 和不可观測到的样本Z Z , Z , , Zn 组成的。则Y X Z。EM算法通过搜寻使所有数据 ...
2017-04-19 09:43 0 3255 推荐指数:
EM算法一般表述: 当有部分数据缺失或者无法观察到时,EM算法提供了一个高效的迭代程序用来计算这些数据的最大似然预计。在每一步迭代分为两个步骤:期望(Expectation)步骤和最大化(Maximization)步骤,因此称为EM算法 ...
GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计。 1. 高斯混合模型(Gaussian Mixture models, GMM) 高斯混合模型(Gaussian Mixture Model ...
注:本文是对《统计学习方法》EM算法的一个简单总结。 1. 什么是EM算法? 引用书上的话: 概率模型有时既含有观测变量,又含有隐变量或者潜在变量。如果概率模型的变量都是观测变量,可以直接使用极大似然估计法或者贝叶斯的方法进行估计模型参数,但是当模型含有隐藏变量时,就不能简单使用 ...
对于高斯混合模型是干什么的呢?它解决什么样的问题呢?它常用在非监督学习中,意思就是我们的训练样本集合只有数据,没有标签。 它用来解决这样的问题:我们有一堆的训练样本,这些样本可以一共分为K类,用z(i)表示。,但是具体样本属于哪类我们并不知道,现在我们需要建立一个模型来描述这个训练样本的分布 ...
原文 :http://tecdat.cn/?p=3433 本文我们讨论期望最大化理论,应用和评估基于期望最大化的聚类。 软件包 install.packages("mclus ...
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM的前3篇博文分别从数学基础、EM通用算法原理、EM的高斯混合模型的角度介绍了EM算法 ...
一、高斯混合模型概述 1、公式 高斯混合模型是指具有如下形式的概率分布模型: 其中,αk≥0,且∑αk=1,是每一个高斯分布的权重。Ø(y|θk)是第k个高斯分布的概率密度,被称为第k个分模型,参数为θk=(μk, αk2),概率密度的表达式为: 高斯混合模型就是K个高斯 ...
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GMM(Gaussian mixture model) 混合高斯模型在机器学习、计算机视觉 ...