一、Introduction Perceptron can represent AND,OR,NOT 用初中的线性规划问题理解 异或的里程碑意义 想学的通透,先学历史! 据说在人工神经网络(artificial neural network, ANN)发展初期,由于无法实现对多层 ...
注:在吴恩达老师讲的 机器学习 课程中,最开始介绍神经网络的应用时就介绍了含有一个隐藏层的神经网络可以解决异或问题,而这是单层神经网络 也叫感知机 做不到了,当时就觉得非常神奇,之后就一直打算自己实现一下,一直到一周前才开始动手实现。自己参考 机器学习 课程中数字识别的作业题写了代码,对于作业题中给的数字图片可以达到 左右的识别准确度。但是改成训练异或的网络时,怎么也无法得到正确的结果。后来查了一 ...
2017-04-15 11:52 16 31346 推荐指数:
一、Introduction Perceptron can represent AND,OR,NOT 用初中的线性规划问题理解 异或的里程碑意义 想学的通透,先学历史! 据说在人工神经网络(artificial neural network, ANN)发展初期,由于无法实现对多层 ...
1.标准卷积神经网络 标准的卷积神经网络由输入层、卷积层(convolutional layer)、下采样层(downsampling layer)、全连接层(fully—connected layer)和输出层构成。 卷积层也称为检测层 下采样层也称为池化层(pooling ...
BP神经网络是深度学习的重要基础,它是深度学习的重要前行算法之一,因此理解BP神经网络原理以及实现技巧非常有必要。接下来,我们对原理和实现展开讨论。 1.原理 有空再慢慢补上,请先参考老外一篇不错的文章:A Step by Step Backpropagation Example ...
神经网络算法以及Tensorflow的实现 一、多层向前神经网络(Multilayer Feed-Forward Neural Network) 多层向前神经网络由三部分组成:输入层(input layer), 隐藏层 (hidden layers), 输入层 (output ...
神经网络在机器学习中有很大的应用,甚至涉及到方方面面。本文主要是简单介绍一下神经网络的基本理论概念和推算。同时也会介绍一下神经网络在数据分类方面的应用。 首先,当我们建立一个回归和分类模型的时候,无论是用最小二乘法(OLS)还是最大似然值(MLE)都用来使得残差达到最小。因此我们在建立模型 ...
1. 背景: 1.1 以人脑中的神经网络为启发,历史上出现过很多不同版本 1.2 最著名的算法是1980年的 backpropagation 2. 多层向前神经网络(Multilayer Feed-Forward Neural Network ...
###神经网络基础概念 人工神经网络又叫神经网络,是借鉴了生物神经网络的工作原理形成的一种数学模型。神经网络是机器学习诸多算法中的一种,它既可以用来做有监督的任务,如分类、视觉识别等,也可以用作无监督的任务。同时它能够处理复杂的非线性问题,它的基本结构是神经元,如下图所示: 其中,x1 ...
什么是异或 在数字逻辑中,异或是对两个运算元的一种逻辑分析类型,符号为XOR或EOR或⊕。与一般的或(OR)不同,当两两数值相同时为否,而数值不同时为真。异或的真值表如下: XOR truth table Input Output ...