前几天查了一些与独热编码相关的资料后,发现看不进去...看不太懂,今天又查了一下,然后写了写代码,通过自己写例子加上别人的解释后,从结果上观察,明白了sklearn中独热编码做了什么事。 下 ...
最近在刷kaggle的时候碰到了两种处理类别型特征的方法:label encoding和one hot encoding。我从stackexchange, quora等网上搜索了相关的问题,总结如下。 label encoding在某些情况下很有用,但是场景限制很多。比如有一列 dog,cat,dog,mouse,cat ,我们把其转换为 , , , , 。这里就产生了一个奇怪的现象:dog和mo ...
2017-04-14 12:25 0 1581 推荐指数:
前几天查了一些与独热编码相关的资料后,发现看不进去...看不太懂,今天又查了一下,然后写了写代码,通过自己写例子加上别人的解释后,从结果上观察,明白了sklearn中独热编码做了什么事。 下 ...
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制,包含独热编码(One-Hot Encoding)代码) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign ...
原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值 ...
一、问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值。 离散特征的编码分为两种情况: 1、离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one-hot编码 2、离散特征的取值有大小的意义,比如size:[X,XL,XXL ...
在《定量变量和定性变量的转换(Transform of Quantitative & Qualitative Variables)》一文中,我们可以看到虚拟变量(Dummy Variable)与独热编码( One Hot Encoding)非常相似,其不同之处在于:在虚拟编码方案中,当特征 ...
问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值。 例如,考虑一下的三个特征: ["male", "female"] ["from Europe", "from U ...