先上caffe dropout_layer.cpp源码,如下: ## 原始的dropout的原理: 在训练时,每个神经单元以概率p被保留(dropout丢弃率为1-p);在测试阶段,每个神经单元都是存在的,权重参数w要乘以p,成为:pw。测试时需要乘上p的原因:考虑第一隐藏层的一个神经元 ...
本文主要介绍Dropout及延伸下来的一些方法,以便更深入的理解。 想要提高CNN的表达或分类能力,最直接的方法就是采用更深的网络和更多的神经元,即deeper and wider。但是,复杂的网络也意味着更加容易过拟合。于是就有了Dropout,大部分实验表明其具有一定的防止过拟合的能力。 Dropout 最早的Dropout可以看Hinton的这篇文章 Improving neural net ...
2017-03-30 21:21 0 11532 推荐指数:
先上caffe dropout_layer.cpp源码,如下: ## 原始的dropout的原理: 在训练时,每个神经单元以概率p被保留(dropout丢弃率为1-p);在测试阶段,每个神经单元都是存在的,权重参数w要乘以p,成为:pw。测试时需要乘上p的原因:考虑第一隐藏层的一个神经元 ...
nn.Conv2d() & nn.Max_pool2d() & nn.BatchNorm2d()& nn.Dropout2d() nn.Conv2d(): 一个二维卷积层的输入张量为(\(N, C_{in}, H, W\)),输出为 (\(N, C_{out}, H ...
Dropout是过去几年非常流行的正则化技术,可有效防止过拟合的发生。但从深度学习的发展趋势看,Batch Normalizaton(简称BN)正在逐步取代Dropout技术,特别是在卷积层。本文将首先引入Dropout的原理和实现,然后观察现代深度模型Dropout的使用情况,并与BN进行 ...
1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在测试数据上损失函数比较 ...
From 《白话深度学习与TensorFlow》 Dropout 顾名思义是“丢弃”,在一轮训练阶段丢弃一部分网络节点,比如可以在其中的某些层上临时关闭一些节点,让他们既不输入也不输出,这样相当于网络的结构发生了改变。而在下一轮训练过程中再选择性地临时关闭一些节点,原则上都是 ...
参数正则化方法 - Dropout 受人类繁衍后代时男女各一半基因进行组合产生下一代的启发,论文(Dropout: A Simple Way to Prevent Neural Networks from Overfitting)提出了Dropout。 Dropout是一种在深度学习环境中应用 ...
本文介绍的是著名的网络结构GoogLeNet及其延伸版本,目的是试图领会其中的思想而不是单纯关注结构。 GoogLeNet Incepetion V1 Moti ...
缓冲区分类 NIO中的buffer用于和通道交互,数据是从通道读入缓冲区,从缓冲区中写入通道的。Buffer就像一个数组,可以保存多个类型相同的数据。每种基本数据类型都有对应的Buffer类: ...