转:http://www.cnblogs.com/pinard/p/6143927.html 在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点。 1. ...
关键部分转自http: www.cnblogs.com pinard p .html 第一次知道网格搜索这个方法,不知道在工业中是不是用这种方式 .首先从步长和迭代次数入手,选择一个较大的步长,和较小的迭代次数。可以将步长设置为 . ,迭代次数从 网格搜索。 .找到最合适的迭代次数,对决策树最大深度max depth和内部节点再划分所需最少样本数min samples split进行网格搜索,最大 ...
2017-03-27 11:40 0 4203 推荐指数:
转:http://www.cnblogs.com/pinard/p/6143927.html 在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点。 1. ...
在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点。 1. scikit-learn GBDT类库概述 在sacikit-learn中 ...
二分类GBDT调参过程: Aarshay Jain对Gradient Tree Boosting总结了一套调参方法,如何衡量参数对整体模型性能的影响力呢?基于经验,Aarshay提出他的见解:“最大叶节点数”(max_leaf_nodes)和“最大树深度”(max_depth)对整体模型性能 ...
1. scikit-learn GBDT类库概述 在sacikit-learn中,GradientBoostingClassifier为GBDT的分类类, 而GradientBoostingRegressor为GBDT的回归类。两者的参数类型完全相同,当然有些参数比如损失函数loss ...
转自http://www.cnblogs.com/pinard/p/6160412.html 1. scikit-learn随机森林类库概述 在scikit-learn中,RF的分类类是R ...
一、GBDT类库弱学习器参数 参数分为三类 第一类:Miscellaneous Parameters: Other parameters for overall functioning. 没啥用 第二类:Boosting Parameters: These affect ...
问题: 用xgboost/gbdt在在调参的时候把树的最大深度调成6就有很高的精度了。但是用DecisionTree/RandomForest的时候需要把树的深度调到15或更高。用RandomForest所需要的树的深度和DecisionTree一样我能理解,因为它是 ...
在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结。本文就从实践的角度对RF做一个总结。重点讲述scikit-learn中RF的调参注意事项,以及和GBDT调参的异同点。 1. scikit-learn随机森林类库概述 ...