原文:LDA概率图模型之贝叶斯理解

贝叶斯 概率分布与机器学习 转自:http: www.cnblogs.com LeftNotEasy archive .html 本文由LeftNotEasy原创,可以转载,但请保留出处和此行,如果有商业用途,请联系作者wheeleast gmail.com 一. 简单的说贝叶斯定理: 贝叶斯定理用数学的方法来解释生活中大家都知道的常识 形式最简单的定理往往是最好的定理,比如说中心极限定理,这样的 ...

2017-03-26 14:05 0 1582 推荐指数:

查看详情

概率模型之:网络

1、贝叶斯定理 P(A∣B)=P(A)P(B∣A)P(B) P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称作A的后验概率。 P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称作B的后验概率。 P(A)是A的先验概率或边缘概率。之所以称为 ...

Tue Sep 12 18:16:00 CST 2017 0 2929
网络——概率模型之有向

目录 模型 网络 条件独立的三种情况 第一种情况tail-to-tail 第二种情况tail-to-head 第三种情况head-to-head D-seperation 网络模型 模型 ...

Wed May 06 04:50:00 CST 2020 0 1128
机器学习 —— 概率模型网络)

  概率模型(PGM)是一种对现实情况进行描述的模型。其核心是条件概率,本质上是利用先验知识,确立一个随机变量之间的关联约束关系,最终达成方便求取条件概率的目的。 1.从现象出发---这个世界都是随机变量   这个世界都是随机变量。   第一,世界是未知的,是有多种可能性的。   第二 ...

Wed Dec 30 05:16:00 CST 2015 2 52671
条件概率,全概率公式理解

简介 学过概率理论的人都知道条件概率的公式:P(AB)=P(A)P(B|A)=P(B)P(A|B);即事件A和事件B同时发生的概率等于在发生A的条件下B发生的概率乘以A的概率。由条件概率公式推导出公式:P(B|A)=P(A|B)P(B)/P(A);即,已知P(A|B),P(A)和P ...

Fri Nov 16 02:23:00 CST 2018 0 4757
理解的朴素模型

理解的朴素模型 我想说:“任何事件都是条件概率。”为什么呢?因为我认为,任何事件的发生都不是完全偶然的,它都会以其他事件的发生为基础。换句话说,条件概率就是在其他事件发生的基础上,某事件发生的概率。 条件概率是朴素模型的基础。 假设,你的xx公司正在面临着用户流失的压力 ...

Fri Mar 24 07:09:00 CST 2017 2 23224
概率模型(PGM):网(Bayesian network)初探

1. 从方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界的真实变化而随机修正,我对世界永远保持开放的态度。 1763年,民间科学家Thomas ...

Sat Oct 26 00:48:00 CST 2019 0 2344
网络(Bayesian network))简介(PRML第8.1节总结)概率模型(Graphical models)

部分图为手写,由于本人字很丑,望见谅,只是想把PRML书的一些部分总结出来,给有需要的人看,希望能帮到一些人理解吧。 下一篇,我将继续介绍本章内容8.2,条件独立 部分图为手写,由于本人字很丑,望见谅,只是想把PRML书的一些部分总结出来,给有需要的人看,希望能帮到一些人理解吧。 ...

Mon Jul 22 05:54:00 CST 2013 1 4003
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM