作者:桂。 时间:2017-03-15 21:12:18 链接:http://www.cnblogs.com/xingshansi/p/6556517.html 声明:欢迎被转载,不过记得注明出处哦~ 本文为拟合系列中的一部分,主要介绍拉普拉斯曲线 ...
作者:桂。 时间: : : 链接:http: www.cnblogs.com xingshansi p .html 声明:欢迎被转载,记得注明出处 前言 本文为曲线与分布拟合的一部分,主要介绍正态分布 拉普拉斯分布等常用分布拟合的理论推导以及代码实现。 一 理论推导 假设数据独立同分布。对于任意数据点 x i ,对应概率密度为 f x i ,最大似然函数: J mathop prod limits ...
2017-03-16 21:19 0 3274 推荐指数:
作者:桂。 时间:2017-03-15 21:12:18 链接:http://www.cnblogs.com/xingshansi/p/6556517.html 声明:欢迎被转载,不过记得注明出处哦~ 本文为拟合系列中的一部分,主要介绍拉普拉斯曲线 ...
拉普拉斯分布的定义与基本性质 其分布函数为 分布函数图 其概率密度函数为 密度函数图 拉普拉斯分布与正太分布的比较 从图中可以直观的发现拉普拉斯分布跟正太分布很相似,但是拉普拉斯分布比正太分布有尖的峰和轻微的厚尾。 ...
Laplace分布的概率密度函数的形式是这样的: $p(x) = \frac{1}{2 \lambda} e^{-\frac{\vert x –\mu \vert}{\lambda}}$ 一般$\mu$的取值为0,所以形式如下: $p(x) = \frac{1}{2 \lambda} e ...
一、功能 产生拉普拉斯分布的随机数。 二、方法简介 1、产生随机变量的组合法 将分布函数\(F(x)\)分解为若干个较为简单的子分布函数的线性组合 \[F(x)=\sum_{i=1}^{K}p_{i}F_{i}(x) \] 其中 $ p_{i}> 0 \ (\forall ...
正则化是为了防止过拟合。 1. 范数 范数是衡量某个向量空间(或矩阵)中的每个向量以长度或大小。 范数的一般化定义:对实数p>=1, 范数定义如下: L1范数: 当p=1时,是L1范数,其表示某个向量中所有元素绝对值的和。 L2范数: 当p=2时,是L2范数 ...
高斯拉普拉斯(Laplace of Gaussian) kezunhai@gmail.com http://blog.csdn.net/kezunhai Laplace算子作为一种优秀的边缘检测算子,在边缘检测中得到了广泛的应用。该方法通过对图像求图像的二阶倒数 ...
假设我们在做一个抛硬币的实验,硬币出现正面的概率是\(\theta\)。在已知前\(n\)次结果的情况下,如何推断抛下一次硬币出现正面的概率呢? 当\(n\)很大的时候,我们可以直接统计正 ...
拉普拉斯变换 由于古典意义下的傅里叶变换存在的条件是\(f(t)\)除了满足狄拉克雷条件以外,还要在\((-\infty,\infty)\)上绝对可积,许多函数都不满足这个条件。在很多实际问题中,存在许多以时间 \(t\) 为自变量的函数,这些函数根本不需要考虑\(t<0\)的情况 ...