什么是梯度? 首先梯度是一个向量,其次梯度是多元函数对各个分量求偏导数得到的向量,但是这里很容易和切向量混淆。切向量是对各个分量对共同的自变量求偏导,这是不同之处。 为什么梯度垂直于切平面? 首先引入等值面的概念,对于函数W,比如说W = c的所有解是一个等值面。 在c等值面上假设 ...
计算梯度幅值函数magnitude 该函数根据输入的微分处理后的x和y来计算梯度幅值,x和y可以通过sobel, scharr等边缘算子求得,而且可以直接输入三通道图像。 计算梯度幅值和梯度方向函数cartToPolar 该函数的输入与magnitude函数相似,参数可以参考函数说明,其中梯度方向的值可以为弧度也可以为角度,通过angleInDegree来设置。 计算梯度方向函数phase 该函 ...
2017-03-14 20:56 0 13971 推荐指数:
什么是梯度? 首先梯度是一个向量,其次梯度是多元函数对各个分量求偏导数得到的向量,但是这里很容易和切向量混淆。切向量是对各个分量对共同的自变量求偏导,这是不同之处。 为什么梯度垂直于切平面? 首先引入等值面的概念,对于函数W,比如说W = c的所有解是一个等值面。 在c等值面上假设 ...
为什么梯度方向是变化最快的方向? 首先,回顾我们怎么在代码中求梯度的(梯度的数值定义): 1)对向量的梯度 以n×1实向量x为变元的实标量函数f(x)相对于x的梯度为一n×1列向量x,定义为 \[\nabla_{\boldsymbol{x}} f(\boldsymbol{x ...
我们都知道梯度很好求,只需要将[-1,1] 与图像分别在x 方向和y方向卷积,即可求得两个方向上的梯度。不过在求梯度方向时,还是有些麻烦,因为梯度方向会指向360°的任何一个方向,所以直接用atan(dy/dx)函数,通常会得到正负PI/2范围内的值,因此,在本文中将根据dy、dx的正负,求取任一 ...
在手势识别时,可利用模板手势与当前手势的边缘梯度方向直方图进行匹配来识别当前手势, 故而就需要构建图像的边缘梯度方向直方图. 梯度为:dx*dx+dy*dy开方. 梯度方向则为:dy/dx(注意dx为0的情况处理). 原图: 梯度方向直方图: ...
方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。此方法使用了图像的本身的梯度方向特征,类似于边缘方向直方图方法,SIFT描述子,和上下文形状方法,但其特征在于其在一个网格密集的大小统一 ...
梯度求法:分别求各个变量的偏导数,偏导数分别乘三个轴的单位向量,然后各项相加。 梯度的本意是一个向量,表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。 ...
目录 向量的内积 柯西 - 施瓦茨不等式 向量的一般化 张量 导数的定义 导数符号 导数的性质 分数函数的导数和 Sigmoid 函数的导数 最小值的条件 偏导数 多变量函数的最小值条件 ...
以二元函数为例,$f(x,y)$,对于任意单位方向$u$,假设$u$是$x$轴的夹角,那么函数$f(x,y)$在$u$这个方向上的变化率为: $f_x(x,y) \cos \alpha + f_y(x,y) \sin \alpha=\nabla f(x,y)^T\begin{pmatrix ...