介绍过去几年中数个在 ImageNet 竞赛(一个著名的计算机视觉竞赛)取得优异成绩的深度卷积神经网络。 LeNet LeNet 证明了通过梯度下降训练卷积神经网络可以达到手写数字识别的最先进的结果。这个奠基性的工作第一次将卷积神经网络推上舞台,为世人所知。 训练: AlexNet ...
最近试试深度学习能做点什么事情。MXNet是一个与Tensorflow类似的开源深度学习框架,在GPU显存利用率上效率高,比起Tensorflow显著节约显存,并且天生支持分布式深度学习,单机多卡 多机多卡支持丰富,拥有着良好的技术架构。目前是亚马逊AWS的官方深度学习框架。由于其团队以MXNet产品本身为先,所以文档资料较少。现在还稍微多了一点。 . 搭建Jupyter notebook远程开发 ...
2017-03-14 20:19 0 2939 推荐指数:
介绍过去几年中数个在 ImageNet 竞赛(一个著名的计算机视觉竞赛)取得优异成绩的深度卷积神经网络。 LeNet LeNet 证明了通过梯度下降训练卷积神经网络可以达到手写数字识别的最先进的结果。这个奠基性的工作第一次将卷积神经网络推上舞台,为世人所知。 训练: AlexNet ...
1.LeNet模型 LeNet是一个早期用来识别手写数字的卷积神经网络,这个名字来源于LeNet论文的第一作者Yann LeCun。LeNet展示了通过梯度下降训练卷积神经网络可以达到手写数字识别在当时最先进的成果,这个尊基性的工作第一次将卷积神经网络推上舞台 上图就是LeNet模型,下面 ...
最后能得到99%的准确率 ...
卷积神经网络(convolutional neural network)。它是近年来深度学习能在计算机视觉中取得巨大成果的基石,它也逐渐在被其他诸如自然语言处理、推荐系统和语音识别等领域广泛使用。 目前我关注的问题是: 输入数据的构建,尤其是多输入、多输出的情况。 finetune ...
我们来看看在图像处理领域如何使用卷积神经网络来对图片进行分类。 1 让计算机做图片分类: 图片分类就是输入一张图片,输出该图片对应的类别(狗,猫,船,鸟),或者说输出该图片属于哪种分类的可能性最大。 人类看到一张图片马上就能分辨出里面的内容,但是计算机分辨一张图片就完全 ...
接上篇:卷积神经网络对图片分类-上 5 池层(Pooling Layers) 池层通常用在卷积层之后,池层的作用就是简化卷积层里输出的信息, 减少数据维度,降低计算开销,控制过拟合。 如之前所说,一张28X28的输入图片,经过5X5的过滤器后会得到一个24X24的特征图像,继续 ...
接上篇:卷积神经网络对图片分类-中 9 ReLU(Rectified Linear Units) Layers 在每个卷积层之后,会马上进入一个激励层,调用一种激励函数来加入非线性因素,决绝线性不可分的问题。这里我们选择的激励函数方式叫做ReLU, 他的方程是这样f(x) = max ...
目标是对UCI的手写数字数据集进行识别,样本数量大约是1600个。图片大小为16x16。要求必须使用SVM作为二分类的分类器。 本文重点是如何使用卷积神经网络(CNN)来提取手写数字图片特征,主要想看如何提取特征的请直接看源代码部分的94行左右,只要对tensorflow有一点了解就可以看 ...