1. 为什么要进行特征选择? 0x1:好的模型 = 好的数据 + 好的特征 + 好的算法 以文字图像识别为例,运行机器学习算法的结果可以被表示为一个函数 y(x),它以一个新的数字的图像 x 为输入, 产生向量y,与目标向量的形式相同。 函数 y(x) 的精确 ...
原文地址:http: blog.csdn.net ycheng sjtu article details 什么是特征选择 简单说,特征选择就是降维。 特征选择的任务 就是要从n维向量中选取m个特征,把原向量降维成为一个m维向量。但是降维必须保证类别的可分离性或者说分类器的性能下降不多。 注意降维具有片面性,算法并不普适。常常会有失效发生。 降维这件小事 在图像处理中叫做图像压缩 特征提取。重在最优 ...
2017-03-13 16:27 0 1580 推荐指数:
1. 为什么要进行特征选择? 0x1:好的模型 = 好的数据 + 好的特征 + 好的算法 以文字图像识别为例,运行机器学习算法的结果可以被表示为一个函数 y(x),它以一个新的数字的图像 x 为输入, 产生向量y,与目标向量的形式相同。 函数 y(x) 的精确 ...
官网的一个例子(需要自己给出计算公式、和k值) 参数 1、score_func ...
概述 针对某种数据,通过一定的特征提取手段,或者记录观测到的特征,往往得到的是一组特征,但其中可能存在很多特征与当前要解决的问题并不密切等问题。另一方面,由于特征过多,在处理中会带来计算量大、泛化能力差等问题,即所谓的“维数灾难”。 特征选择便是从给定的特征集合中选出相关特征子集的过程 ...
1、介绍 Max-Relevance and Min-Redundancy,最大相关—最小冗余。最大相关性保证特征和类别的相关性最大;最小冗余性确保特征之间的冗余性最小。它不仅考虑到了特征和标注之间的相关性,还考虑到了特征和特征之间的相关性。度量标准使用的是互信息(Mutual ...
3.2 Embedded嵌入法 嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行。在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大到小选择特征。这些权值系数往往代表了特征对于模型的某种贡献或某种重要性,比如决策树和树 ...
一、关于特征选择 主要参考连接为:参考链接,里面有详细的特征选择内容。 介绍 特征选择是特征工程里的一个重要问题,其目标是寻找最优特征子集。特征选择能剔除不相关(irrelevant)或冗余(redundant )的特征,从而达到减少特征个数,提高模型精确度,减少运行时间的目的。另一方 ...
在做文本挖掘,特别是有监督的学习时,常常需要从文本中提取特征,提取出对学习有价值的分类,而不是把所有的词都用上,因此一些词对分类的作用不大,比如“的、是、在、了”等停用词。这里介绍两种常用的特征选择方法: 互信息 一个常用的方法是计算文档中的词项t与文档类别c的互信息MI,MI度量 ...
看到一篇好文章分享出来,看别人是如何选特征的,作者是Edwin Jarvis 作者:Edwin Jarvis 特征选择(排序)对于数据科学家、机器学习从业者来说非常重要。好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点、底层 ...