窄依赖、宽依赖以及stage的划分依据:https://www.cnblogs.com/itboys/p/6673046.html 参考: http://blog.csdn.net/u0126849 ...
coalesce和repartition Transformation类算子 代码示例 ...
2017-03-13 00:18 0 2162 推荐指数:
窄依赖、宽依赖以及stage的划分依据:https://www.cnblogs.com/itboys/p/6673046.html 参考: http://blog.csdn.net/u0126849 ...
一.算子调优之MapPartitions提升Map类操作性能 1.MapPartitions操作的优点: 如果是普通的map,比如一个partition中有1万条数据;ok,那么你的function要执行和计算1万次。 但是,使用MapPartitions操作之后,一个task仅仅会执行 ...
repartition repartition 有三个重载的函数: 1) def repartition(numPartitions: Int): DataFrame 此方法返回一个新的[[DataFrame]],该[[DataFrame]]具有确切 ...
在上一篇文章中 Spark源码系列:DataFrame repartition、coalesce 对比 对DataFrame的repartition、coalesce进行了对比,在这篇文章中,将会对RDD的repartition、coalesce进行对比。 RDD重新分区的手段 ...
在Spark开发中,有时为了更好的效率,特别是涉及到关联操作的时候,对数据进行重新分区操作可以提高程序运行效率(很多时候效率的提升远远高于重新分区的消耗,所以进行重新分区还是很有价值的)。在SparkSQL中,对数据重新分区主要有两个方法 repartition 和 coalesce ,下面将对 ...
的分区:分别是 coalesce()方法和repartition()。 这两个方法有什么区别,看看 ...
一.spark 分区 partition的理解: spark中是以vcore级别调度task的。 二.coalesce 与 repartition的区别(我们下面说的coalesce都默认shuffle参数为false的情况) 我们还拿上面的例子说: PS: 三.实例 ...