训练AlexNet网络时,出现Check failed:datum_height >= crop_size (size vs. 227)错误,具体如下图所示: 根据提示,问题是crop_size的尺寸不匹配,AlexNet网络默认crop_size的尺寸是227*227,而我进行归一化 ...
caffe 进行自己的imageNet训练分类:loss一直是 . ,accuracy一直是 解决方法: http: blog.csdn.net jkfdqjjy article details locationNum 知道了原因,解决时就能对症下药。总体上看,softmax输入的feature由两部分计算得到:一部分是输入数据,另部分是各层权重参数。 观察数据中是否有异常样本或异常label导致 ...
2017-03-09 14:23 0 2859 推荐指数:
训练AlexNet网络时,出现Check failed:datum_height >= crop_size (size vs. 227)错误,具体如下图所示: 根据提示,问题是crop_size的尺寸不匹配,AlexNet网络默认crop_size的尺寸是227*227,而我进行归一化 ...
当我们使用Caffe训练AlexNet网络时,会遇到精度一值在低精度(30%左右)升不上去,或者精度总是为0,如下图所示: 出现这种情况,可以尝试使用以下几个方法解决: 1.数据样本量是否太少,最起码要千张图片样本。 2.在制作训练样本标签时,是否打乱样本顺序,这样在训练时每取 ...
1.在开始之前,先简单回顾一下几个概念。 Caffe(Convolution Architecture For Feature Extraction-卷积神经网络框架):是一个清晰,可读性高,快速的深度学习框架。 CUDA(Compute Unifined Device ...
1、AlexNet网络模型,pytorch1.1.0 实现 注意:AlexNet,in_img_size >=64 输入图片矩阵的大小要大于等于64 # coding:utf-8 import torch.nn as nn import torch class ...
由于我涉及一个车牌识别系统的项目,计划使用深度学习库caffe对车牌字符进行识别。刚开始接触caffe,打算先将示例中的每个网络模型都拿出来用用,当然这样暴力的使用是不会有好结果的- -||| ,所以这里只是记录一下示例的网络模型使用的步骤,最终测试的准确率就暂且不论了! 一、图片数据库 ...
前言: 本文章记录了我将自己的数据集处理并训练的流程,帮助一些刚入门的学习者,也记录自己的成长,万事起于忽微,量变引起质变。 正文: 一、流程 1)准备数据集 2)数据转换为lmdb格式 3)计算均值并保存(非必需) 4)创建模型 ...
1.准备样本 要训练自己的样本,首先需要把样本准备好,需要准备的是训练集和测试集,caffe支持直接使用图片,当然把样本转换为leveldb或lmdb格式的话训练起来会更快一点。这里我先偷个懒,直接使用图片吧 [尴尬.jpg] 训练集和测试集是一样的,不过样本不要重叠。首先我把训练集 ...
:在ELM中先将训练样本导入,然后根据随机设置的输入层与隐层的权值Wi以及阈值Bi,然后再测试的时候不改变训练时候自动产生的Wi以及Bi,进行测试在于自己的结果进行比对从而得到测试误差。同样的在训练的时候也是如此来得到训练误差 训练模型如下: m为输入层神经元个数,M为隐层神经元 ...