数据规范化处理是数据挖掘的一项基本操作。现实中,数据中不同特征的量纲可能不一致,数值间的差别可能很大,不进行处理可能会影响到数据分析的结果,因此,需要对数据按照一定比例进行缩放,使之落在一个特定的区域,便于进行综合分析。特别是基于距离的挖掘方法,在建模前一定要对数据进行规范化处理,如SVM ...
R语言是一个自由 免费 源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。这里的统计计算可以是数据分析 建模或是数据挖掘等,通过无数大牛提供的软件包,可以帮我们轻松实现算法的实施。 一些读者觉得R语言零碎的东西太多了,无法记住那么多函数和功能,于是就问R语言有没有一种类似于SAS之EM或SPSS之Modeler的界面化操作。很幸运,Graham等人特地为 偷懒 的分析师写了rattle包 ...
2017-03-06 11:40 0 2010 推荐指数:
数据规范化处理是数据挖掘的一项基本操作。现实中,数据中不同特征的量纲可能不一致,数值间的差别可能很大,不进行处理可能会影响到数据分析的结果,因此,需要对数据按照一定比例进行缩放,使之落在一个特定的区域,便于进行综合分析。特别是基于距离的挖掘方法,在建模前一定要对数据进行规范化处理,如SVM ...
Python之所以如此流行,原因在于它的数据分析和挖掘方面表现出的高性能,而我们前面介绍的Python大都集中在各个子功能(如科学计算、矢量计算、可视化等),其目的在于引出最终的数据分析和数据挖掘功能,以便辅助我们的科学研究和应用问题的解决。 线性回归模型 回归是统计学中最有力的工具 ...
对于刚入门的数据挖掘小伙伴们,先要建立一个数据挖掘的流程概念。 首先,我们拿到相应的数据,这个数据有的是通过数据库,利用hive或者SQL获取你用于分析的数据;或者直接通过一些上游分析得到的数据(例如通过生物信息分析流程得到的初步结果)。 拿到数据之后,需要先对数据进行一个初步探索,需要去了解数据 ...
一、前言 文中部分内容来自书籍和网络,部分内容为自己的理解。希望借助笔记的方式能够加深自己对该部分知识的掌握,也作为日后回顾的记录。 二、基本概念 很多小伙伴听到数据挖掘这四个字的时候很困惑,虽然字面意思大家都知道,但是数据挖掘到底是个什么东西,需要用到什么技术来实现却并不了解,下面 ...
一.现在我主要讲解数据挖掘的基本规范流程 数据挖掘通常需要数据收集,数据集成,数据规约,数据清理,数据变换,数据挖掘实施过程,模式评估和知识表示 1.数据收集:根据所得的数据,抽象出数据的特征信息,将收集到的信息存入数据库。选择一种合适的数据存储和管理的数据仓库类型 2.数据集成:把不同来 ...
sdata={'语文':89,'数学':96,'音乐':39,'英语':78,'化学':88} #字典向Series转化 @@ >>> studata=Series(sdata ...
CRISP-DM数据挖掘标准流程 CRISP-DM (cross-industry standard process for data mining), 即为"跨行业数据挖掘过程标准". 此KDD过程模型于1999年欧盟机构联合起草. 通过近几年的发展,CRISP-DM 模型在各种KDD过程模型 ...
一些概念与定义 数据挖掘是从大量数据中挖掘有趣模式和知识的过程。数据源包括数据库、数据仓库、Web、其他信息存储库或动态地流入系统的数据。 数据仓库是一个从多个数据源收集的信息存储库,存放在一致的模式下,并且通常驻留在单个站点上。通常,数据仓库用称做数据立方体(data cube ...