偏微分方程的数值解法 主要总结常见椭圆形、双曲型、抛物型偏微分方程的数值解法 椭圆偏微分方程 拉普拉斯方程是最简单的椭圆微分方程 \[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y ...
p . 实习题 李荣华 用线性元求下列边值问题的数值解 ...
2017-03-05 17:24 6 1071 推荐指数:
偏微分方程的数值解法 主要总结常见椭圆形、双曲型、抛物型偏微分方程的数值解法 椭圆偏微分方程 拉普拉斯方程是最简单的椭圆微分方程 \[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y ...
效果图: ...
实验目的 用Matlab实现欧拉法、后退欧拉法、梯形方法和改进欧拉公式 实验要求 1. 给出欧拉法、后退欧拉法、梯形方法和改进欧拉公式算法 2. 用Matlab实现欧拉法、后退欧拉法、梯形方法和改进欧拉公式 实验内容 实验步骤 (1)欧拉法算法, MATLAB ...
MATLAB常微分方程的数值解法 作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 一、实验目的 科学技术中常常要求解常微分方程的定解问题,所谓数值解法就是求未知函数在一系列离散点处的近似值。 二、实验原理 三、实验程序 1. 尤拉 ...
偏微分方程数值解---学习总结 1.知识回顾 (注:\(\mit V\)是线性空间) 内积 $(\cdot ,\cdot):\mit V \times \mit V \longrightarrow \mathbb{R} $ 是一个双线性映射,并且满足 \((i) (u,v)=(v,u ...
偏微分方程数值解---学习总结(1) 1.知识回顾 (注:\(\mit V\)是线性空间) 内积 $(\cdot ,\cdot):\mit V \times \mit V \longrightarrow \mathbb{R} $ 是一个双线性映射,并且满足 \((i ...
偏微分方程数值解---学习总结(2) 关于 \(Sobolve\) 空间的几个重要定理 迹定理 : \(\Omega\) 是 \(\mathbb{R}^d\) 的一个有界开子集,具有 李普希茨连续边界 \(\partial\,\Omega\), \(s>\frac ...
龚昇简明复分析第二版习题参考解答目录 韩青编A Basic Course in PDEs习题解答目录 245道2020年数学分析/91道2020年高等代数考研试题题目分类目录 Berkeley 常微分方程问题集目录 Evans PDE目录 点集拓扑课件/作业/作业讲解目录 丁同仁常微分方程 ...