github博客传送门 csdn博客传送门 本章所需知识: 没有基础的请观看深度学习系列视频 tensorflow Python基础 资料下载链接: 深度学习基础网络模型(mnist手写体识别数据集) MNIST数据集手写体识别(CNN实现) 最后附上训练截图: ...
本文参考Yann LeCun的LeNet 经典架构,稍加ps得到下面适用于本手写识别的cnn结构,构造一个两层卷积神经网络,神经网络的结构如下图所示: 输入 卷积 pooling 卷积 pooling 全连接层 Dropout Softmax输出 第一层卷积利用 的patch, 个卷积核,可以计算出 个特征。然后进行maxpooling。第二层卷积利用 的patch, 个卷积核,可以计算出 个特 ...
2017-03-03 20:45 0 8908 推荐指数:
github博客传送门 csdn博客传送门 本章所需知识: 没有基础的请观看深度学习系列视频 tensorflow Python基础 资料下载链接: 深度学习基础网络模型(mnist手写体识别数据集) MNIST数据集手写体识别(CNN实现) 最后附上训练截图: ...
import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #下载MINIST数据集mnist = input_data.read_data_sets('MNIST ...
本案例采用的是MNIST数据集[1],是一个入门级的计算机视觉数据集。 MNIST数据集已经被嵌入到TensorFlow中,可以直接下载和安装。 此时,文件名为MNIST_data的数据集就下载下来了,其中one_hot=True为将样本标签转化为one_hot编码。 接下 ...
转载请注明出处:http://www.cnblogs.com/willnote/p/6874699.html 前言 本文假设大家对CNN、softmax原理已经比较熟悉,着重点在于使用Tensorflow对CNN的简单实践上。所以不会对算法进行详细介绍,主要针对代码中所使用的一些函数定义与用法 ...
介绍如何使用keras搭建一个多层感知机实现手写体识别及搭建一个神经网络最小的必备知识 keras常用模块的简单介绍 'Input','Model','Sequential',这三个模块是以前老的接口,新的版本已经将它们融合到后面的模块当中 以'__'开头的模块是一些 ...
mnist手写体识别 Mnist数据集可以从官网下载,网址: http://yann.lecun.com/exdb/mnist/ 下载下来的数据集被分成两部分:55000行的训练数据集(mnist.train)和10000行的测试数据集(mnist.test)。每一个MNIST数据 ...
环境: pytorch1.1 cuda9.0 ubuntu16.04 该网络有3层,第一层input layer,有784个神经元(MNIST数据集是28*28的单通道图片,故有784个神经元)。第二层为hidden_layer,设置为500个神经元。最后一层是输出层,有10个神经元(10 ...
TensorFlow 手写体数字识别 以下资料来源于极客时间学习资料 • 手写体数字 MNIST 数据集介绍 MNIST 数据集介绍 MNIST 是一套手写体数字的图像数据集,包含 60,000 个训练样例和 10,000 个测试样例, 由纽约大学 ...