本文由网上多篇博客拼凑而成。 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等。但是同时,单决策树又有一些不好的地 ...
Bagging策略 .总样本数量是n个,从样本中重采样 有放回的 选出n个样本 ,会有约 . 的样本不会被抽到 .在所有属性上对这n个样本建立分类器 比如决策树,svm,lr .重复步骤 和 m次,建立了m个分类器 .将数据放在这m个分类器上,根据这m个分类器的投票结果决定数据属于哪一类 随机森林 在Bagging基础上做了改进 .从样本中重采样 有放回的 选出n个样本,与bagging相同 .从 ...
2017-03-01 21:30 0 2832 推荐指数:
本文由网上多篇博客拼凑而成。 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等。但是同时,单决策树又有一些不好的地 ...
GBDT和随机森林的相同点: 1、都是由多棵树组成 2、最终的结果都是由多棵树一起决定 GBDT和随机森林的不同点: 1、组成随机森林的树可以是分类树,也可以是回归树;而GBDT只由回归树组成 2、组成随机森林的树可以并行生成;而GBDT只能是串行生成 3、对于最终的输出 ...
随机森林 RF RandomForest 随机森林的集成学习方法是bagging ,但是和bagging 不同的是bagging只使用bootstrap有放回的采样样本,但随机森林即随机采样样本,也随机选择特征,因此防止过拟合能力更强,降低方差。 使用的融合方法:bagging ...
4, GBDT和随机森林的相同点: 1、都是由多棵树组成2、最终的结果都是由多棵树一起决定 5,GBDT和随机森林的不同点: 1、组成随机森林的树可以是分类树,也可以是回归树;而GBDT只由回归树组成2、组成随机森林的树可以并行生成;而GBDT只能是串行生成 3、对于最终的输出 ...
一、决策树(类型、节点特征选择的算法原理、优缺点、随机森林算法产生的背景) 1、分类树和回归树 由目标变量是离散的还是连续的来决定的;目标变量是离散的,选择分类树;反之(目标变量是连续的,但自变量可以是分类的或数值的),选择回归树; 树的类型不同,节点分裂的算法和预测的算法也不一样 ...
常见算法(logistic回归,随机森林,GBDT和xgboost) 9.25r早上面网易数据挖掘工程师岗位,第一次面数据挖掘的岗位,只想着能够去多准备一些,体验面这个岗位的感觉,虽然最好心有不甘告终,不过继续加油。 不过总的来看,面试前有准备永远比你没有准备要强好几倍 ...
目录 1、基本知识点介绍 2、各个算法原理 2.1 随机森林 -- RandomForest 2.2 XGBoost算法 2.3 GBDT算法(Gradient Boosting Decision Tree) 2.4 ...
http://www.cnblogs.com/maybe2030/p/4585705.html 阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 袋外错误率(oob error ...