首先搞清楚什么叫判别分析?Discriminant Analysis就是根据研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。 根据判别标准不同,可以分为距离判别、Fisher判别、Bayes判别法等。比如在KNN中用的就是距离判别,当然这里的“距离”又有好几种:欧氏距离、街区距离 ...
实际意义 判别分析于聚类分析的功能差不多,区别在于,聚类分析之前,没有人知道具体的是怎么分的类,分了哪几大类。而判别分析是已经把类别给分好,要做的是把没有分好类的数据观测,按照之前分好的类再进行分类。这里不同于生活中常见的分类先有具体的分类逻辑 这里叫做判别函数 。所以判别分的难点在于先由分好类的数据观测找到一个或者多个判别函数,然后对未进行分类的观测按照该判别公式进行分类。 进行判别分析需要满足 ...
2017-02-21 22:53 0 11826 推荐指数:
首先搞清楚什么叫判别分析?Discriminant Analysis就是根据研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。 根据判别标准不同,可以分为距离判别、Fisher判别、Bayes判别法等。比如在KNN中用的就是距离判别,当然这里的“距离”又有好几种:欧氏距离、街区距离 ...
LDA, Linear Discriminant Analysis,线性判别分析。注意与LDA(Latent Dirichlet Allocation,主题生成模型)的区别。 1、引入 上文介绍的PCA方法对提取样本数据的主要变化信息非常有效,而忽略了次要变化的信息。在有些情况下,次要信息 ...
线性判别分析 线性判别分析(linear discriminant analysis,LDA)是对费舍尔的线性鉴别方法的归纳,这种方法使用统计学,模式识别和机器学习方法,试图找到两类物体或事件的特征的一个线性组合,以能够特征化或区分它们。所得的组合可用来作为一个线性分类器,或者,更常见 ...
应用案例 1 线性判别分析 执行线性判别分析可使用lda()函数,且该函数有三种执行形式,依次尝试使用。 (1)公式formula格式 我们使用nmkat变量作为待判别变量,其他剩余的变量作为特征变量,根据公式nmkat~使用训练集数据来运行lda()函数: library(MASS ...
LDA算法入门(原文:https://blog.csdn.net/warmyellow/article/details/5454943) 一. LDA算法概述: 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher ...
Fisher线性判别分析 1、概述 在使用统计方法处理模式识别问题时,往往是在低维空间展开研究,然而实际中数据往往是高维的,基于统计的方法往往很难求解,因此降维成了解决问题的突破口。 假设数据存在于d维空间中,在数学上,通过投影使数据映射到一条直线上,即维度从d维变为1维,这是容易实现 ...
13聚类分析和判别分析 ================================== 聚类分析 什么是聚类分析? 聚类:数据对象的集合 在同一集群内彼此相似 与其他集群中的对象不同 ================================== 聚集分析 将一组数据 ...
实验目的 (1)掌握判别分析、主成分分析。 (2)会用判别分析、主成分分析对实际问题进行分析。 实验要求 实验步骤要有模型建立,模型求解、结果分析。 实验内容 (1)银行的贷款部门需要判别每个客户的信用好坏(是否未履行还贷责任),以决定是否给予贷款。可以根据贷款申请人 ...