一,train_val.prototxt 二,solver.prototxt 三,deploy.prototxt 参考一: 模型就用程序自带的caffenet模型,位置在 models/bvlc_reference_caffenet/文件夹 ...
参考链接:http: sebastianruder.com optimizing gradient descent 如果熟悉英文的话,强烈推荐阅读原文,毕竟翻译过程中因为个人理解有限,可能会有谬误,还望读者能不吝指出。另外,由于原文太长,分了两部分翻译,本篇主要是梯度下降优化算法的总结,下篇将会是随机梯度的并行和分布式,以及优化策略的总结。 梯度下降是优化中最流行的算法之一,也是目前用于优化神经网 ...
2017-02-21 11:24 0 2084 推荐指数:
一,train_val.prototxt 二,solver.prototxt 三,deploy.prototxt 参考一: 模型就用程序自带的caffenet模型,位置在 models/bvlc_reference_caffenet/文件夹 ...
之前用deploy.prototxt 还原train_val.prototxt过程中,遇到了坑,所以打算总结一下 本人以熟悉的LeNet网络结构为例子 不同点主要在一前一后,相同点都在中间 train_val.prototxt 中的开头 看这个名字也知道 ...
caffe solver参数意义与设置 batchsize:每迭代一次,网络训练图片的数量,例如:如果你的batchsize=256,则你的网络每迭代一次,训练256张图片;则,如果你的总图片张数为1280000张,则要想将你所有的图片通过网络训练一次,则需要1280000/256=5000次 ...
tf.trainable_variables可以得到整个模型中所有trainable=True的Variable,也是自由处理梯度的基础 基础梯度操作方法: tf.gradients 用来计算导数。该函数的定义如下所示 def gradients(ys ...
####参数设置###################1. ####训练样本###总共:121368个batch_szie:256将所有样本处理完一次(称为一代,即epoch)需要:121368/256=475 次迭代才能完成所以这里将test_interval设置为475,即处理完一次所有的训练 ...
考察梯度下降法的各种变体,然后会简要地总结在训练(神经网络或是机器学习算法)的过程中可能遇到的挑战。 ...
梯度下降优化算法 梯度下降是常用的优化方式,具体的算法有: 梯度下降法 批梯度下降(Batch Gradient Descent, BGD) 随机梯度下降(Stochastic Gradient Decent, SGD) 小批量梯度下降(Mini-Batch ...
序言 对于y=f(wx+b),如何使用神经网络来进行求解,也就是给定x和y的值,如何让系统自动生成正确的权重值w和b呢? 一般情况下,有两种尝试方法: 1) 随机试:纯概率问题,几乎不可能实现。 2) 梯度下降法:先初始化w和b(可以随机 ...