一、利用wiki中文语料进行word2vec模型构建 1)数据获取 到wiki官网下载中文语料,下载完成后会得到命名为zhwiki-latest-pages-articles.xml.bz2的文件,里面是一个XML文件 下载地址如下:https ...
环境: win python . . 下载wiki中文分词语料 使用迅雷下载会快不少,大小为 个多G https: dumps.wikimedia.org zhwiki latest zhwiki latest pages articles.xml.bz . 安装opencc用于中文的简繁替换 安装exe的版本 到 https: bintray.com package files byvoid ...
2017-02-18 16:51 6 4727 推荐指数:
一、利用wiki中文语料进行word2vec模型构建 1)数据获取 到wiki官网下载中文语料,下载完成后会得到命名为zhwiki-latest-pages-articles.xml.bz2的文件,里面是一个XML文件 下载地址如下:https ...
1.word2vec词向量原理解析 word2vec,即词向量,就是一个词用一个向量来表示。是2013年Google提出的。word2vec工具主要包含两个模型:跳字模型(skip-gram)和连续词袋模型(continuous bag of words,简称CBOW),以及两种高效训练的方法 ...
word2vec介绍 word2vec官网:https://code.google.com/p/word2vec/ word2vec是google的一个开源工具,能够根据输入的词的集合计算出词与词之间的距离。 它将term转换成向量形式,可以把对文本内容的处理简化为向量空间中的向量 ...
在Linux上安装好word2vec, 进入trunk文件夹,把分词后的语料文件放在trunk文件夹内,执行:./word2vec -train tt.txt -output vectors.bin -cbow 1 -size 80 -window 5 -negative 80 -hs ...
最近在工作之余学习NLP相关的知识,对word2vec的原理进行了研究。在本篇文章中,尝试使用TensorFlow自行构建、训练出一个word2vec模型,以强化学习效果,加深理解。 一.背景知识: 在深度学习实践中,传统的词汇表达方式是使用one-hot向量,其中,向量的维度等于词汇量 ...
google最近新开放出word2vec项目,该项目使用deep-learning技术将term表示为向量,由此计算term之间的相似度,对term聚类等,该项目也支持phrase的自动识别,以及与term等同的计算。 word2vec(word to vector)顾名思义,这是一个 ...