RDD根据对父RDD的依赖关系,可分为窄依赖与宽依赖2种。 主要的区分之处在于父RDD的分区被多少个子RDD分区所依赖,如果一个就为窄依赖,多个则为宽依赖。更好的定义应该是: 窄依赖的定义是子RDD的每一个分区都依赖于父RDD的一个或者少量几个分区(不依赖于全部分区) 与依赖相关的以下5个类 ...
一:RDD的依赖关系 .在代码中观察 val data Array , , , , val distData sc.parallelize data val resultRDD distData.flatMap v gt to v .map v gt v , .reduceByKey resultRDD.toDebugString 查看RDD的依赖情况 .解释 处表示,这是两个不同的stage 同 ...
2017-02-14 19:59 0 1356 推荐指数:
RDD根据对父RDD的依赖关系,可分为窄依赖与宽依赖2种。 主要的区分之处在于父RDD的分区被多少个子RDD分区所依赖,如果一个就为窄依赖,多个则为宽依赖。更好的定义应该是: 窄依赖的定义是子RDD的每一个分区都依赖于父RDD的一个或者少量几个分区(不依赖于全部分区) 与依赖相关的以下5个类 ...
一、前述 RDD之间有一系列的依赖关系,依赖关系又分为窄依赖和宽依赖。 Spark中的Stage其实就是一组并行的任务,任务是一个个的task 。 二、具体细节 窄依赖 父RDD和子RDD partition之间的关系是一对一的。或者父RDD一个partition只对 ...
RDD(Resilient Distributed Datasets)弹性的分布式数据集,又称Spark core,它代表一个只读的、不可变、可分区,里面的元素可分布式并行计算的数据集。 RDD是一个很抽象的概念,不易于理解,但是要想学好Spark,必须要掌握RDD,熟悉它的编程模型,这是学习 ...
RDD依赖关系为成两种:窄依赖(Narrow Dependency)、宽依赖(Shuffle Dependency)。窄依赖表示每个父RDD中的Partition最多被子RDD的一个Partition所使用;宽依赖表示一个父RDD的Partition都会被多个子RDD的Partition所使用 ...
: 由DAGScheduler对RDD之间的依赖性进行分析,通过DAG来分析各个RDD之间的转换依赖关系 根 ...
RDD的四种依赖关系 RDD四种依赖关系,分别是 ShuffleDependency、PrunDependency、RangeDependency和OneToOneDependency四种依赖关系。如下图所示:org.apache.spark.Dependency有两个一级子类,分别 ...
注意:此文的stage划分有错,stage的划分是以shuffle操作作为边界的,可以参考《spark大数据处理技术》第四章page rank例子! 参考:http://litaotao.github.io/deep-into-spark-exection-model 我们用一个 ...