极大似然估计学习时总会觉得有点不可思议,为什么可以这么做,什么情况才可以用极大似然估计。本文旨在通俗理解MLE(Maximum Likelihood Estimate)。 一、极大似然估计的思想与举例 举个简单的栗子:在一个盒子里有白色黑色小球若干个,每次有放回地从里面哪一个球,已知抽 ...
这篇文章给了我一个启发,我们可以自己用已知分布的密度函数进行组合,然后构建一个新的密度函数啦,然后用极大似然估计MLE进行估计。 代码和结果演示 代码: 取出MASS包这中的数据 data geyser,package MASS head geyser attach geyser par bg lemonchiffon hist waiting,freq F,col lightcoral fre ...
2017-01-27 22:59 0 2570 推荐指数:
极大似然估计学习时总会觉得有点不可思议,为什么可以这么做,什么情况才可以用极大似然估计。本文旨在通俗理解MLE(Maximum Likelihood Estimate)。 一、极大似然估计的思想与举例 举个简单的栗子:在一个盒子里有白色黑色小球若干个,每次有放回地从里面哪一个球,已知抽 ...
最大似然估计与最小二乘估计的区别 标签(空格分隔): 概率论与数理统计 最小二乘估计 对于最小二乘估计来说,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值与观测值之差的平方和最小。 设Q表示平方误差,\(Y_{i}\)表示估计值,\(\hat{Y}_{i ...
1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”。例如,我们知道这个分布是正态分布,但是不知道均值和方差;或者是二项分布,但是不知道均值。 最大似然估计(MLE,Maximum Likelihood ...
最大似然估计: 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知。我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似 ...
极大似然估计(MLE)和极大后验估计(MAP)分别是频率学派和贝叶斯学派(统计学者分为两大学派,频率学派认为参数是非随机的,而贝叶斯学派认为参数也是随机变量)的参数估计方法,下面我们以线性回归分析为例,分别简要介绍MLE和MAP,两者的关系以及分别与最小二乘回归、正则化最小二乘回归分析的关系 ...
一、为什么要估计(estimate) 在概率,统计学中,我们所要观测的数据往往是很大的,(比如统计全国身高情况)我们几乎不可能去统计如此之多的值。这时候,就需要用到估计了。我们先抽取样本,然后通过统计样本的情况,去估计总体。下面是数学中常用到的术语: ·总体(Populantion ...
最大似然估计 最大似然估计(Maximum likelihood estimation)可以简单理解为我们有一堆数据(数据之间是独立同分布的.iid),为了得到这些数据,我们设计了一个模型,最大似然估计就是求使模型能够得到这些数据的最大可能性的参数,这是一个统计(statistics)问题 ...