经常地,对一堆数据进行建模的时候,特别是分类和回归模型,我们有很多的变量可供使用,选择不同的变量组合可以得到不同的模型,例如我们有5个变量,2的5次方,我们将有32个变量组合,可以训练出32个模型。但是哪个模型更加的好呢? 选择最优模型的指导思想是从两个方面去考察:一个是似然函数最大化,另一 ...
http: blog.csdn.net xianlingmao article details 经常地,对一堆数据进行建模的时候,特别是分类和回归模型,我们有很多的变量可供使用,选择不同的变量组合可以得到不同的模型,例如我们有 个变量, 的 次方,我们将有 个变量组合,可以训练出 个模型。但是哪个模型更加的好呢 目前常用有如下方法: AIC ln L k中文名字:赤池信息量 akaike info ...
2017-01-22 10:21 0 4013 推荐指数:
经常地,对一堆数据进行建模的时候,特别是分类和回归模型,我们有很多的变量可供使用,选择不同的变量组合可以得到不同的模型,例如我们有5个变量,2的5次方,我们将有32个变量组合,可以训练出32个模型。但是哪个模型更加的好呢? 选择最优模型的指导思想是从两个方面去考察:一个是似然函数最大化,另一 ...
一、AIC(Akaike information Criterion)准则 二、BIC(Bayesian information Criterion)准则 参考文献: 【1】AIC与BIC区别 ...
在建立ARMA和GARCH模型的时候,我们常常需要涉及到模型阶数(如GARCH(p,q)中p和q)的选择问题,在这里我们使用AIC和BIC两个计算参数进行判断: 什么是AIC和BIC? 两者定义来源于信息准则:研究者通过加入模型复杂度的惩罚项来避免过拟合问题,随后推出了两个优选模型 ...
复杂度的惩罚项来避免过拟合问题,此处我们介绍一下常用的两个模型选择方法——赤池信息准则(Akaike In ...
首先看几个问题 1、实现参数的稀疏有什么好处? 一个好处是可以简化模型、避免过拟合。因为一个模型中真正重要的参数可能并不多,如果考虑所有的参数作用,会引发过拟合。并且参数少了模型的解释能力会变强。 2、参数值越小代表模型越简单吗? 是。越复杂的模型,越是会尝试对所有的样本进行拟合 ...
一、模型选择之AIC和BIC 人们提出许多信息准则,通过加入模型复杂度的惩罚项来避免过拟合问题,此处我们介绍一下常用的两个模型选择方法 赤池信息准则(Akaike Information Criterion,AIC)和贝叶斯信息准则(Bayesian Information ...
AIC 此处模型选择我们只考虑模型参数数量,不涉及模型结构的选择。 很多参数估计问题均采用似然函数作为目标函数,当训练数据足够多时,可以不断提高模型精度,但是以提高模型复杂度为代价的,同时带来一个机器学习中非常普遍的问题——过拟合。所以,模型选择问题在模型复杂度与模型对数据集描述能力(即似 ...
转:http://zoroeye.iteye.com/blog/2026984?utm_source=tuicool&utm_medium=referral md5加密实现方法有很多种,也导致很难选择。大概分析下自己了解的一些用法。 1.sun官方 sun提供了MessageDigest ...