处理实时的大数据流最常用的就是分布式计算系统,下面分别介绍Apache中处理大数据流的三大框架: Apache Storm 这是一个分布式实时大数据处理系统。Storm设计用于在容错和水平可扩展方法中处理大量数据。他是一个流数据框架,具有最高的社区率。虽然Storm ...
转自:http: www.open open.com lib view open .html 许多分布式计算系统都可以实时或接近实时地处理大数据流。本文将对三种Apache框架分别进行简单介绍,然后尝试快速 高度概述其异同。 Apache Storm 在Storm中, 先要设计一个用于实时计算的图状结构,我们称之为拓扑 topology 。这个拓扑将会被提交给集群,由集群中的主控节点 maste ...
2017-01-18 09:54 0 5275 推荐指数:
处理实时的大数据流最常用的就是分布式计算系统,下面分别介绍Apache中处理大数据流的三大框架: Apache Storm 这是一个分布式实时大数据处理系统。Storm设计用于在容错和水平可扩展方法中处理大量数据。他是一个流数据框架,具有最高的社区率。虽然Storm ...
storm、spark streaming、flink都是开源的分布式系统,具有低延迟、可扩展和容错性诸多优点,允许你在运行数据流代码时,将任务分配到一系列具有容错能力的计算机上并行运行,都提供了简单的API来简化底层实现的复杂程度。 Apache Storm 在Storm中,先要设计一个用于 ...
过程,以及各种专门术语,本文将介绍大数据系统一个最基本的组件:处理框架。处理框架负责对系统中的数据进行计算,例如处理 ...
storm 使用kafka做数据源,还可以使用文件、redis、jdbc、hive、HDFS、hbase、netty做数据源。 新建一个maven 工程: pom.xml KafkaTopology ...
分布式流处理是对无边界数据集进行连续不断的处理、聚合和分析。它跟MapReduce一样是一种通用计算,但我们期望延迟在毫秒或者秒级别。这类系统一般采用有向无环图(DAG)。 DAG是任务链的图形化表示,我们用它来描述流处理作业的拓扑。如下图,数据从sources流经处理任务链到sinks ...
说起大数据处理啊,一切都起源于Google公司的经典论文。在当时(2000年左右),由于网页数量急剧增加,Google公司内部平时要编写很多的程序来处理大量的原始数据:爬虫爬到的网页、网页请求日志;计算各种类型的派生数据:倒排索引、网页的各种图结构等等。这些计算在概念上很容易理解,但由于输入 ...
在上一篇文章中,我们讲了Spark大数据处理的可扩展性和负载均衡,今天要讲的是更为重点的容错处理,这涉及到Spark的应用场景和RDD的设计来源。 Spark的应用场景 Spark主要针对两种场景: 机器学习,数据挖掘,图应用中常用的迭代算法(每一次迭代对数据执行相似的函数 ...