1. Apriori算法简介 Apriori算法是挖掘布尔关联规则频繁项集的算法。Apriori算法利用频繁项集性质的先验知识,通过逐层搜索的迭代方法,即将K-项集用于探察(k+1)项集,来穷尽数据集中的所有频繁项集。先找到频繁项集1-项集集合L1, 然后用L1找到频繁2-项集 ...
前言:这是一个老故事, 但每次看总是能从中想到点什么.在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道。原来,美国的妇女们经常会嘱咐她们的丈夫下班以后要为孩子买尿布。而丈夫在买完尿布之后又要顺手买回自己爱喝的啤酒,因此啤酒和尿布在一起购买的机会还是很多的。 ...
2017-01-07 16:11 0 3403 推荐指数:
1. Apriori算法简介 Apriori算法是挖掘布尔关联规则频繁项集的算法。Apriori算法利用频繁项集性质的先验知识,通过逐层搜索的迭代方法,即将K-项集用于探察(k+1)项集,来穷尽数据集中的所有频繁项集。先找到频繁项集1-项集集合L1, 然后用L1找到频繁2-项集 ...
1 Apriori介绍 Apriori算法使用频繁项集的先验知识,使用一种称作逐层搜索的迭代方法,k项集用于探索(k+1)项集。首先,通过扫描事务(交易)记录,找出所有的频繁1项集,该集合记做L1,然后利用L1找频繁2项集的集合L2,L2找L3,如此下去,直到不能再找到任何频繁k项集。最后 ...
Apriopri算法 Apriori算法在数据挖掘中应用较为广泛,常用来挖掘属性与结果之间的相关程度。对于这种寻找数据内部关联关系的做法,我们称之为:关联分析或者关联规则学习。而Apriori算法就是其中非常著名的算法之一。关联分析,主要是通过算法在大规模数据集中寻找频繁项集和关联规则 ...
导读: 随着大数据概念的火热,啤酒与尿布的故事广为人知。我们如何发现买啤酒的人往往也会买尿布这一规律?数据挖掘中的用于挖掘频繁项集和关联规则的Apriori算法可以告诉我们。本文首先对Apriori算法进行简介,而后进一步介绍相关的基本概念,之后详细的介绍Apriori算法的具体策略 ...
第十一章 使用Apriori算法进行关联分析 一.导语 “啤酒和尿布”问题属于经典的关联分析。在零售业,医药业等我们经常需要是要关联分析。我们之所以要使用关联分析,其目的是为了从大量的数据中找到一些有趣的关系。这些有趣的关系将对我们的工作和生活提供指导作用。 二.关联分析的基本概念 所谓 ...
首先导入包含apriori算法的mlxtend库, 调用apriori进行关联规则分析,具体代码如下,其中数据集选取本博客 “机器学习算法——关联规则” 中的例子,可进行参考,设置最小支持度(min_support)为0.4,最小置信度(min_threshold)为0.1 ...
本篇分为三个部分: 算法背景 算法介绍 代码实现 一、算法背景 啤酒与尿布故事: 某超市为增加销售量,提取出了他们超市所有的销售记录进行分析。在对这些小票数据进行分析时,发现男性顾客在购买婴儿尿片时,通常会顺便搭配带打啤酒来犒劳 ...
Apriori算法用来找出频繁出现的数据集合。 1. 频繁项集的评估标准 常用的频繁项集的评估标准有支持度、置信度、提升度三个。 支持度:几个关联数据在数据集中出现的次数占总数据集的比重。或者说几个关联数据出现的概率。 比如两个想分析关联性的数据X和Y,则支持度 ...