背景 之前在研究Object Detection的时候,只是知道Precision这个指标,但是mAP(mean Average Precision)具体是如何计算的,暂时还不知道。最近做OD的任务迫在眉睫,所以仔细的研究了一下mAP的计算。其实说实话,mAP的计算,本身有很多现成的代码可供 ...
作为机器学习重要的评价指标,标题中的三个内容,在下面读书笔记里面都有讲: http: www.cnblogs.com charlesblc p .html 但是讲的不细,不太懂。今天又理解了一下。看了这篇文章: https: www.douban.com note type like 讲的很好。 都是基于这张图,先贴一下: PR Precision Recall曲线,这个东西应该是来源于信息检索中 ...
2017-01-05 16:10 0 15786 推荐指数:
背景 之前在研究Object Detection的时候,只是知道Precision这个指标,但是mAP(mean Average Precision)具体是如何计算的,暂时还不知道。最近做OD的任务迫在眉睫,所以仔细的研究了一下mAP的计算。其实说实话,mAP的计算,本身有很多现成的代码可供 ...
python金融风控评分卡模型和数据分析微专业课(博主亲自录制视频):http://dwz.date/b9vv 初识ROC曲线 1. ROC的前世今生: ROC的全称是“受试者工作特征”(Receiver Operating Characteristic)曲线 ...
原文链接:https://blog.csdn.net/weixin_42518879/article/details/83959319 主要内容:机器学习中常见的几种评价指标,它们各自的含义和计算(注意本文针对二元分类器!) 1、混淆矩阵 True Positive(真正,TP):将正类预测 ...
深入理解对比两个曲线各自的特性和相互的差异需要花不少时间研读一些国外的技术博客与相关paper,暂时先列出下面这么多,这部分后续可以继续补充。 ROC曲线和AUC的定义可以参看“ROC曲线于AUC”,Precision-Recall曲线顾名思义即Precision为纵轴,Recall为横轴 ...
转自:http://www.zhizhihu.com/html/y2012/4076.html分类、检索中的评价指标很多,Precision、Recall、Accuracy、F1、ROC、PR Curve...... 一、历史 wiki上说,ROC曲线最先在二战中分析雷达信号,用来检测敌军 ...
在论文的结果分析中,ROC和PR曲线是经常用到的两个有力的展示图。 1.ROC曲线 ROC曲线(receiver operating characteristic)是一种对于灵敏度进行描述的功能图像。ROC曲线可以通过描述真阳性率(TPR)和假阳性率(FPR)来实现。由于是通过比较两个操作特征 ...
在一般认知中,用模型对测试集进行分类预测,结果应该是X或者X'(也可以说是或者否)。根据混淆矩阵算出TP、FP、TN、FN,进一步算出TPR、FPR。一个测试集只会有一对TPR/FPR值,那么ROC曲线就只会有一个点,何谈曲线之说?难道是用多个测试集得到多对TPR/FPR值,来绘制ROC曲线 ...
分类模型评估: 指标 描述 Scikit-learn函数 Precision AUC from sklearn.metrics import precision ...