《ImageNet Classification with Deep Convolutional Neural Networks》 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 1.2 百万的高分辨率的图像数据集ImageNet, 图像的种类为1000 种的深度卷积神经网络 ...
转载请注明出处: http: www.cnblogs.com sysuzyq p .html by 少侠阿朱 ...
2017-01-03 15:52 1 1278 推荐指数:
《ImageNet Classification with Deep Convolutional Neural Networks》 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 1.2 百万的高分辨率的图像数据集ImageNet, 图像的种类为1000 种的深度卷积神经网络 ...
这篇论文提出了AlexNet,奠定了深度学习在CV领域中的地位。 1. ReLu激活函数 2. Dropout 3. 数据增强 网络的架构如图所示 包含八个学习层:五个卷积神经网络和三个全 ...
这个论文应该算是把深度学习应用到图片识别(ILSVRC,ImageNet large-scale Visual Recognition Challenge)上的具有重大意义的一篇文章。因为在之前,人们一直质疑深度学习的强大有能力。 大家看看它的引用数目就知道它很厉害了,,9000多的引用 ...
ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC-2010竞赛的120万高分辨率的图像分到1000不同的类别中。在测试数据上,我们得到 ...
一、摘要 了解CNN必读的一篇论文,有些东西还是可以了解的。 二、结构 1、 Relu的好处: 1、在训练时间上,比tanh和sigmod快,而且BP的时候求导也很容易 ...
论文 《 Convolutional Neural Networks for Sentence Classification》通过CNN实现了文本分类。 论文地址: 666666 模型图: 模型解释可以看论文,给出code and comment:https ...
文本分类任务中可以利用CNN来提取句子中类似 n-gram 的关键信息。 TextCNN的详细过程原理图见下: keras 代码: 说明如下: 输入层 ...
以下内容摘自《Bag of Tricks for Image Classification with Convolutional Neural Networks》。 1 高效训练 1.1 大batch训练 当我们有一定资源后,当然希望能充分利用起来,所以通常会增加batch ...