算法背景 人工蜂群算法 (Artificial Bee Colony, ABC) 是由 Karaboga 于 2005 年提出的一种新颖的基于集群智能的全局优化算法,其直观背景来源于蜂群的采蜜行为。它的主要特点是不需要了解问题的特殊信息,只需要对问题进行优劣的比较,通过各人工蜂个体的局部寻优行为 ...
其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入。但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人。从论文刊登后,陆陆续续收到本科生 研究生还有博士生的来信和短信微信等,表示了对论文的兴趣以及寻求算法的效果和实现细节,所以,我也就通过邮件或者短信微信来回信,但是有时候也会忘记回复。 另外一个原因也是时间久了 ...
2017-01-01 12:56 9 8544 推荐指数:
算法背景 人工蜂群算法 (Artificial Bee Colony, ABC) 是由 Karaboga 于 2005 年提出的一种新颖的基于集群智能的全局优化算法,其直观背景来源于蜂群的采蜜行为。它的主要特点是不需要了解问题的特殊信息,只需要对问题进行优劣的比较,通过各人工蜂个体的局部寻优行为 ...
刚用LUA写了AGSO算法,效果奇差无比. 可能写错了..下面这个蜂群算法.效果很好.跳出局部最优的能力比较强! ...
目前人工蜂群算法主要分为基于婚配行为与基于釆蜜行为两大类,本文研究的是基于釆蜜行为的人工蜂群算法。 蜜蜂采蜜 自然界中的蜜蜂总能在任何环境下以极高的效率找到优质蜜源,且能适应环境的改变。蜜蜂群的采蜜系统由蜜源、雇佣蜂、非雇佣蜂三部分组成,其中一个蜜源的优劣有很多要素,如蜜源花蜜量的大小 ...
ABSIndividual.py ABS.py 运行程序: ObjFunction见简单遗传算法-python实现。 ...
1.K-均值聚类法的概述 之前在参加数学建模的过程中用到过这种聚类方法,但是当时只是简单知道了在matlab中如何调用工具箱进行聚类,并不是特别清楚它的原理。最近因为在学模式识别,又重新接触了这种聚类算法,所以便仔细地研究了一下它的原理。弄懂了之后就自己手工用matlab编程实现 ...
1.K-均值聚类法的概述 之前在参加数学建模的过程中用到过这种聚类方法,但是当时只是简单知道了在matlab中如何调用工具箱进行聚类,并不是特别清楚它的原理。最近因为在学模式识别,又重新接触了这种聚类算法,所以便仔细地研究了一下它的原理。弄懂了之后就自己手工用matlab编程实现 ...
基于自适应邻域搜索和高斯扰动的人工蜂群算法(ABCNG) 人工蜂群算法是一种流行的群体智能优化算法。它因易于实现、参数少、全局搜索能力强而受到广泛关注。然而,ABC也存在一些局限性,如开发能力弱、收敛速度慢等。为了克服这些缺点,本文提出了一种新的基于自适应邻域 ...
K-均值聚类算法 聚类是一种无监督的学习算法,它将相似的数据归纳到同一簇中。K-均值是因为它可以按照k个不同的簇来分类,并且不同的簇中心采用簇中所含的均值计算而成。 K-均值算法 算法思想 K-均值是把数据集按照k个簇分类,其中k是用户给定的,其中每个簇是通过质心来计算簇的中心点 ...