preface Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。 Python数据分析与挖掘技术概述 所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大 ...
preface Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。 Python数据分析与挖掘技术概述 所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大,而数据挖掘,是指对大量的数据进行分析与挖倔,得到一些未知的,有价值的信息等,比如从网站的用户和用户行为中挖掘出 ...
2016-12-31 14:44 0 16985 推荐指数:
preface Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。 Python数据分析与挖掘技术概述 所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大 ...
preface 在上一章节我们聊了python大数据分析的基本模块,下面就说说2个项目吧,第一个是进行淘宝商品数据的挖掘,第二个是进行文本相似度匹配。好了,废话不多说,赶紧上车。 淘宝商品数据挖掘 数据来源: 自己写个爬虫爬吧,爬到后入库(mysql)。 数据清洗: 所谓的数据 ...
1.概述 大数据时代,数据的存储与挖掘至关重要。企业在追求高可用性、高扩展性及高容错性的大数据处理平台的同时还希望能够降低成本,而Hadoop为实现这些需求提供了解决方案。面对Hadoop的普及和学习热潮,笔者愿意分享自己多年的开发经验,带领读者比较轻松地掌握Hadoop数据挖掘的相关知识 ...
帮助数据科学家更好地理解架构图 > Photo by Jared Murray on Unsplash 介绍 在使用数据获取业务价值的公司中,尽管您可能不会一直以数据科学技能为荣,但始终可以很好地管理数据基础架构。 每个人都希望将数据存储在可访问的位置,妥善清理并定期更新 ...
Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Error, 相对误差和) MSE(Mean Squared Error ...
大数据的4V特点: Volume(大量):数据巨大。 Velocity(高速):数据产生快,每一天每一秒全球人产生的数据足够庞大且数据处理也逐渐变快。 Variety(多样):数据格式多样化,如音频数据、文本数据等 Value(价值):通过收集大量数据不相关数据探查并证明其两者之间 ...