一、3σ原则 3σ原则又称为拉依达准则,该准则具体来说,就是先假设一组检测数据只含有随机误差,对原始数据进行计算处理得到标准差,然后按一定的概率确定一个区间,认为误差超过这个区间的就属于异常值。 正态分布状况下,数值分布表: 数值分布 在数据中的占 ...
一直想把数据预处理的逻辑给理清楚点,在这里和大家一起分享。 一:缺失值的处理 删除缺失值 这是一种很常用的策略。 缺点:如果缺失值太多,最终删除到没有什么数据了。那就不好办了。 . 缺失值的填补 均值法 根据缺失值的属性相关系数最大的那个属性把数据分成几个组,然后分别计算每个组的均值,把这些均值放入到缺失的数值里面就可以了。 缺点:改变了数据的分布,还有就是有的优化问题会对方差优化,这样会让对方差 ...
2016-12-30 18:16 2 25602 推荐指数:
一、3σ原则 3σ原则又称为拉依达准则,该准则具体来说,就是先假设一组检测数据只含有随机误差,对原始数据进行计算处理得到标准差,然后按一定的概率确定一个区间,认为误差超过这个区间的就属于异常值。 正态分布状况下,数值分布表: 数值分布 在数据中的占 ...
异常值是指样本中的个别值,其数值明显偏离其余的观测值。 异常值也称离群点,异常值的分析也称为离群点的分析 异常值分析 → 1,3σ原则 2, 箱型图分析 异常值处理方法 → 1, 删除 2,修正填补 1,# 异常值分析 (1)3σ原则 如果数据服从正态分布,异常值被定义为一组测定值中 ...
学习kaggle输出处理整个总结,以下图、代码都来自于kaggle 的 micro-course 缺失值处理 共有三种方法: 丢弃缺失值所在的行(当缺失值较多时,影响比较大,不常用此方法 ...
数据清洗之数据预处理 摩托车的销售情况数据 Condition:摩托车新旧情况(new:新的 和used:使用过的) Condition_Desc:对当前状况的描述 ...
数据导入可见:《Python之Pandas知识点》 此文图方便,就直接输入数据了。 1缺失值处理 1.1删除法 DataFrame.dropna(axis=0, how='any', thresh=None, subset=None ...
缺失值处理 数据缺失主要包括记录缺失和字段信息缺失等情况,其对数据分析会有较大影响,导致结果不确定性更加显著 缺失值的处理:删除记录 / 数据插补 / 不处理 1.判断是否有缺失数据 判断是否有缺失值数据 - isnull,notnull ...
清理缺失值 实时编辑器,选择任务>清理缺失数据 首先,先写一组包含缺失值和异常值的例子 ...