决策树的分类过程和人的决策过程比较相似,就是先挑“权重”最大的那个考虑,然后再往下细分。比如你去看医生,症状是流鼻涕,咳嗽等,那么医生就会根据你的流鼻涕这个权重最大的症状先认为你是感冒,接着再根据你咳嗽等症状细分你是否为病毒性感冒等等。决策树的过程其实也是基于极大似然估计。那么我们用一个什么标准 ...
已知:流感训练数据集,预定义两个类别 求:用ID 算法建立流感的属性描述决策树 流感训练数据集 No. 头痛 肌肉痛 体温 患流感 是 是 正常 否 是 是 高 是 是 是 很高 是 否 是 正常 否 否 否 高 否 否 是 很高 是 是 否 高 是 原理分析: 在决策树的每一个非叶子结点划分之前,先计算每一个属性所带来的信息增益,选择最大信息增益的属性来划分,因为信息增益越大,区分样本的能力就越 ...
2016-12-28 22:57 2 6766 推荐指数:
决策树的分类过程和人的决策过程比较相似,就是先挑“权重”最大的那个考虑,然后再往下细分。比如你去看医生,症状是流鼻涕,咳嗽等,那么医生就会根据你的流鼻涕这个权重最大的症状先认为你是感冒,接着再根据你咳嗽等症状细分你是否为病毒性感冒等等。决策树的过程其实也是基于极大似然估计。那么我们用一个什么标准 ...
Contents 1. 决策树的基本认识 2. ID3算法介绍 3. 信息熵与信息增益 4. ID3算法的C++实现 1. 决策树的基本认识 决策树是一种依托决策而建立起来的一种树。在机器学习中,决策树是一种 ...
一,简介 ID3(Iterative Dichotmizer 3) 1.什么是决策树学习 决策树学习是以训练或样本数据集为基础的归纳学习算法,是用于分类和预测的重要技术。 2.ID3核心思想 核心思想是利用信息熵原理选择信息增益最大的属性作为分类属性,递归地拓展决策树的分枝,完成 ...
一、决策树之ID3算法简述 1976年-1986年,J.R.Quinlan给出ID3算法原型并进行了总结,确定了决策树学习的理论。这可以看做是决策树算法的起点。1993,Quinlan将ID3算法改进成C4.5算法,称为机器学习的十大算法之一。ID3算法的另一个分支是CART ...
ID3算法的核心思想就是以信息增益度量属性选择,选择分裂后信息增益最大的属性进行分裂。 例子 训练数据 每一行代表一个数据,前4个元素表示输入,最后一个是标签。 测试数据 算法讲解 设 \(D\) 为用类别标签 \(p_i\) 对训练元组进行的划分,则 \(D\) 的信息熵表示 ...
Day Outlook Temperature Humidity Wind PlayTennis ...
本文将详细介绍ID3算法,其也是最经典的决策树分类算法。 1、ID3算法简介及基本原理 ID3算法基于信息熵来选择最佳的测试属性,它选择当前样本集中具有最大信息增益值的属性作为测试属性;样本集的划分则依据测试属性的取值进行,测试属性有多少个不同的取值就将样本集划分为多少个子样本集,同时决策树 ...
1、决策树原理 1.1、定义 分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点和有向边组成。结点有两种类型:内部节点和叶节点,内部节点表示一个特征或属性,叶节点表示一个类。 举一个通俗的栗子,各位立志于脱单的单身男女在找对象的时候就已经完完全全使用了决策树的思想。假设一位母亲 ...